
Tutorial:
Securing preview

version: 1.0
Author: David Haasler

Table of contents
2Securing page rendering...1
2Integrating namespace..1.1
2Securing..1.2
4Securing binary methods..2
4Integrating namespace..2.1
4Securing..2.2

Requirements

Description
This tutorial describes how you can limit access to a page and a binary method.

Signs and symbols

Boxes marked with an arrow symbol and a green border contains instruction of

what to do next.

This kind of boxes contains tips and tricks.

Source code is shown in blue boxes.

1Tutorial: Securing preview

1 Securing page rendering
You can secure the rendering of a literal method in such a way that only users logged on (to

the RenderEngine), who have particular authorization for access to the data object, can see

it.

1.1 Integrating namespace

In order to move around in the context of a user within the rendering, the extension

“Personalization” is necessary.

Integrate the namespace “http://onionworks.net/2006/data/personalization” into your method.

The appropriate methods and elements can now be reached via the prefix “user”.

1.2 Securing

For the actual securing, insert the following, preferably directly at the beginning of the literal

method:

<user:accessControl

 validations="read"

 notAuthenticatedUri="{$loginHref}"

 successfulAuthenticationUri="{$currentHref}"

 notAuthorizedUri="{$registerHref}"

/>

Parameters

Default behaviour if

not specified

OptionalMeaningParameters

contains value of the

current object

Yesobject on which the

authorizations are to

be checked.

target

readYesR e q u i r e d

authorizations.

Possible values:

- read

- modify

- delete

Several values

separated by blanks.

validations

2Tutorial: Securing preview

1 Securing page rendering

HTTP exception with

status code 401 "Not

Authenticated"

YesLink to a page to

which forwarding is to

take place if no user

notAuthenticatedUri

is currently logged in.

This is usually the

login page.

- YesLink to a page to

which forwarding is to

successfulAuthenticationUri

take place if a user

has successfully

logged in. This is

usually a link to the

page which the user

is trying to call.

HTTP exception with

status code "Not

Authorized"

YesLink to a page to

which forwarding is to

take place if the

notAuthorizedUri

logged-in user does

not have the

necessary rights.

How the control works
First it is checked whether a user is logged on to the RenderEngine. If this is not the case,

forwarding is done to the address in the parameter “notAuthenticatedUri”. In doing so, the

HTTP GET parameter“redirect” is attached with the value “successfulAuthenticationUri”.

Forwarding is therefore not automatic! After logging in successfully, forwarding can take

place to the “successfulAuthenticationUri” in the login method.

If no value is specified for the parameter “notAuthenticatedUri”, an HTTP exception with

status code 401 "User not authenticated" is triggered.

If a user is logged in however, it is checked whether he has the authorizations specified in

“validations” for the appropriate object (“target”).

The indication of several authorizations as the parameter “validations” means a UND linking

of authorizations. The check is therefore only successful if all specified authorizations are

present.

If the parameter “validations” is not present, it is merely checked whether a user is logged

in.

3Tutorial: Securing preview

1 Securing page rendering

If the check of the specified authorizations fails, the user is forwarded to the page specified

in the parameter “notAuthorizedUri”. If the parameter is not specified, an HTTP exception

with the status code 401 “Not Authorized” is triggered.

2 Securing binary methods
If downloads are created in a secured area, these are not yet secured automatically

themselves. If someone forwards such a download link, the file can also be downloaded

without logging in.

In order to prevent this, the binary method must also be secured.

2.1 Integrating namespace

Integrating the namespace “Personalization” is also necessary for securing the binary methods.

2.2 Securing

A binary method is secured where the actual HTTP response is created. Instead of a

<b:webResponse> element you therefore use <user:secureWebResponse>. In addition to

the parameters you also set for the "normal" <b:webResponse>, you can also add the following

for the secured one:

<user:secureWebResponse

 ...

 target="{c.id()}"

 notAuthenticatedUri="{$loginHref}"

 successfulAuthenticationUri="{$currentHref}"

/>

Parameters

Default behaviour if

not specified

OptionalMeaningParameters

contains value of the

current object

Yesobject on which the

authorizations are to

be checked.

target

HTTP exception with

status code 401 "User

not Authenticated"

YesLink to a page to

which forwarding is to

take place if no user

notAuthenticatedUri

is currently logged in.

This is usually the

login page.

4Tutorial: Securing preview

2 Securing binary methods

-YesLink to a method to

which forwarding is to

successfulAuthenticationUri

take place if a user

has successfully

logged in. This is

usually a link to the

page which the user

is trying to call.

How the control works
First it is checked whether a user is logged on to the RenderEngine. If this is not the case,

forwarding is done to the address in the parameter “notAuthenticatedUri”. In doing so, the

HTTP GET parameter“redirect” is attached with the value “successfulAuthenticationUri” if

available. If no value is specified for the parameter “notAuthenticatedUri”, an HTTP exception

with status code 401 “User not authenticated” is triggered.

If a user is logged in however, the parameter “target” is checked. If it contains a complete

XLink it is checked whether the logged-in user has read authorization for it. If “target” just

contains the value “onion” however (i.e. the prefix of the relevant data source), it is sufficient

for a user to be logged in.

If the authorizations check fails, the user is forwarded to the page specified in the parameter

“notAuthorizedUri”. If the parameter is not specified, an HTTP exception with the status code

500 “User not authorized” is triggered.

5Tutorial: Securing preview

2 Securing binary methods

