
Tutorial:
Working with SharePoint WebServices

version: 0.1
Author: David Haasler

Table of contents
2Overview...1
2Extending extension..2
2Adding web link...2.1
4Extending code...2.2
6Error sources...2.3
6WebService unavailable..2.3.1
6Login to web server is not working..2.3.2
6Extending transformations..3
7Error sources...3.1
7List addressing..3.1.1
8Relocating authentication..4
8Adapting web.config..4.1
9Extending module...4.2
9Extending extension..4.3

Requirements
The developer needs full web server access for this tutorial. In addition, there must be

administrator access to the SharePoint server and to the SharePoint installation.

Since changes must also be made in SharePoint for using the SharePoint WebServices, the

developer must know how to handle the software.

Moreover, the developer should have already familiarised himself with the onion.net

SharePoint Integration.

For doing the basics, it is assumed that an own module or extension is already integrated in

the project at hand. Moreover, it is assumed that the SharePoint Integration has been correctly

installed and works.

This tutorial does not give a general introduction to SharePoint, SharePoint WebServices,

the onion.net SharePoint Integration or the extension development.

Developing own modules and extensions

Overview of the existing SharePoint Web Services

Microsoft SharePoint howto page

Description
This tutorial describes the use of SharePoint WebServices using the example of the method

“UpdateListItems”. List elements in a SharePoint list can be deleted or updated with this

method. In addition, adding new elements is possible.

In this tutorial, values from the transformations are stored as list elements of a SharePoint

list using the WebServices.

Signs and symbols

Boxes marked with an arrow symbol and a green border contains instruction of

what to do next.

This kind of boxes contains tips and tricks.

Source code is shown in blue boxes.

1Tutorial: Working with SharePoint WebServices

/language=en/35579/developing-own-modules-and-extensions
http://msdn.microsoft.com/en-us/library/dd878586%28v=office.12%29.aspx
http://office.microsoft.com/de-de/sharepoint-help/?CTT=97

1 Overview
The later procedure will be to call an extension method in the transformations. The XML is

transferred at that stage, which is needed by the WebService later on.The extension method

is only the mediator so to speak between the transformations and WebService. It makes the

connection to the WebService and calls the method with the relevant parameters. Possible

errors are then logged and an appropriate response in the form of the text “success” or “error”

is returned, which can then be treated accordingly in the transformations.

The WebService merely throws an except ion of the type

“Microsoft.SharePoint.SoapServer.SoapServerException” in the case of an error. This does

not tell us very much. In some cases an exception is not thrown, but merely an error code

referred to in the return XML of the WebService.Therefore each part of this tutorial is followed

by a section “error sources”, which addresses the most frequent problems and solutions.

These sections are not exhaustive and are constantly extended where appropriate.

2 Extending extension
Since, for the extension of the transformations, we need to know exactly what the WebService

method expects, it makes good sense to first create the extension method and familiarise

ourselves a little with the WebService.

2.1 Adding web link

In order to use the methods of a WebService in the Visual Studio, the WebService must be

added as a link.

Right-click on the project and select “Add web link”.

2Tutorial: Working with SharePoint WebServices

1 Overview

If you do not have this item in the context menu, select “Add service link” instead.

Click on “Extended…” in the dialogue that opens and select “Add web link”.

Enter the URL to the WebService in the opened dialogue (in our case “http://

<Site>/_vti_bin/Lists.asmx”) and assign a name, e.g. “SharepointLists”.

3Tutorial: Working with SharePoint WebServices

2 Extending extension

If you click on the green arrow, the available methods are listed.

After you have clicked on “Add reference”, the Webservice in the Project Folder Explorer

should look as follows

2.2 Extending code

In order to use the methods of the WebService, an appropriate instance must be present

first of all.

To start with, insert the class of the WebService that has just been inserted for

use with the using directive.

using Contoso.Renderengine.SharepointLists;

4Tutorial: Working with SharePoint WebServices

2 Extending extension

We can then create a global object on it:

private Lists lists = new Lists();

Since SharePoint is linked with the active directory of the domain, a login is usually necessary.

Extend the constructor of the extension to include the following code:

lists.Credentials = new NetworkCredential("username", "password");lists.Url

= "http://www.my-sharepoint.de/_vti_bin/lists.asmx";

If SharePoint runs on a server other than the Render Engine and the login data

is assigned to another domain, this must be transferred as a third parameter

when creating the NetworkCredentials. Note: the protocol must always be placed

in front (even if an IP address is specified instead of a readable URL).

We can now add an extension method, which is considered the desired mediator.

To do this, add the following code.

[ExtensionMethod(Name = "updateListItems")]

public string UpdateListItems(string listID, XPathNavigator batchXml)

{

 try

 {

 XmlDocument batch = new XmlDocument();

 batch.LoadXml(batchXml.InnerXml);

 XmlNode updates = batch.SelectSingleNode("Batch");

 lists.UpdateListItems(listID, updates);

 return "success";

 }

 catch (Exception e)

 {

 Log.Error(e.Message);

5Tutorial: Working with SharePoint WebServices

2 Extending extension

 return "error";

 }

}

We want to use the WebService method “UpdateListItems ()”. This is documented in the

Microsoft Library. The method can be universally applied for the three use cases Delete,

Update and Add. What exactly is to be done is controlled via the “Batch” XML, which is

transferred as a parameter. We will look at this in the next section, since we want to create

it in the transformations.

Then build a new “Build” and update the onion.net Render Engine.

2.3 Error sources

2.3.1 WebService unavailable
Call the URL of the WebService locally in the browser. If you are given a list of the methods

of the WebService(after a login where appropriate), you know that the WebService is available.

If you do not get a list of the methods although the login and URL are correct, a setting may

have to be readjusted in SharePoint or a port opened on the server in the Firewall for the

WebServices.

2.3.2 Login to web server is not working
Check whether you have specified the correct domain for creating the NetworkCredentials

and whether the protocol (e.g. “HTTP”) is in front. This also has to be indicated if you do not

specify a readable web address but just an IP address.

3 Extending transformations
As previously mentioned, the WebService method “UpdateListItems ()” requires an XML

element and the GUID of the SharePoint list to be accessed.

Note: The XLink is not meant by this, but really only the GUID!

X L i n k :

sharepoint://list(en,064525c1-007a-47a6-b349-32990e2416ad)@189b38e1-5b2a-49a6-aefd-b601a26e0bee

GUID: 064525c1-007a-47a6-b349-32990e2416ad

The possible structure of the batch XML is documented in detail in the Microsoft Library.

In the case of a product evaluation it could look for example as follows:

6Tutorial: Working with SharePoint WebServices

3 Extending transformations

http://msdn.microsoft.com/en-us/library/lists.lists.updatelistitems%28v=office.12%29.aspx

<Batch OnError="Continue">

<Method ID="1" Cmd="New">

<Field Name="ID">New</Field>

<Field Name="Title">2012-04-05 13:42 Erika Mustermann</Field>

<Field Name="FullName">Erika Mustermann</Field>

<Field Name="Bewertung">5</Field>

<Field Name="Bewertungstext">Super Produkt! Jederzeit wieder! Nur zu

empfehlen!</Field>

</Method>

</Batch>

The fields “FullName”, “Evaluation” and “Evaluation text” are self-added website columns to

the data type of the list element. The SharePoint-internal name must be indicated here as

the attribute “Name”. This can be determined in SharePoint itself. An alternative is the

onion.net data view of SharePoint contents.

If you want to fill a website column of the “Lookup” type using the batch XML,

you must structure this as follows.

<Field Name="ProductReference" List="{List-GUID der Referenzliste}">{List-ID

of the entry in the reference list}</Field>

A concrete example:

<Field Name="ProductReference"

List="064525c1-007a-47a6-b349-32990e2416ad">10</Field>

The list ID of the item is the unique number of the list item which is to be linked to within the

list where the item is located. This can be found in the XLink of a list item. For the XLink

»sharepoint://listitem(en,064525c1-007a-47a6-b349-32990e2416ad,11)@189b38e1-5b2a-49a6-aefd-b601a26e0bee«,

it can be determined that the item has the ID »11« within the list.

Manually create a list item in SharePoint and call the XML of the item in the

browser with the data view “content”.

3.1 Error sources

3.1.1 List addressing
Make sure that you really do only indicate the list GUID, and not the XLink. (e.g.

»sharepoint://list(en,064525c1-007a-47a6-b349-32990e2416ad)@189b38e1-5b2a-49a6-aefd-b601a26e0bee«).

7Tutorial: Working with SharePoint WebServices

3 Extending transformations

4 Relocating authentication
The information for establishing the connection to the SharePoint can still be found directly

in our extension at the moment. This makes little sense for various reasons.

On the one hand, it means the code cannot be reused. If, for example, a SharePoint other

than live is to be used in the preview (so as to not introduce tests produced in the preview

into the productive SharePoint), then this is cannot be done just like that. There would have

to be different extensions or different extension methods for live and preview.

Moreover, a change to the access data (perhaps carried out in 3 month-periods for security

reasons) or the relocation of the SharePoint system to another server with another IP address,

would mean an unnecessary change in the extension. Instead of letting the server

administrator perform its administrative activities, a web developer must make a change in

the code and update the Render Engines. The latter usually entails a restarting of the web

application, which may not be wanted at any time of the day during operation.

It is therefore in our interest to relocate the login information into the web.config file of the

Render Engine.

No later than now should you create a special onion.net user without

administrative access to the SharePoint, since access is now being opened to

more or less “everyone” who has access to the web.config.

4.1 Adapting web.config

First of all, we want to insert the login information into the web.config. Similarly to the

configuration of the ImageServer, we create an element for it below the module configuration.

Extend the configuration of the project module as follows.

<module type="{Projektname}.Renderengine.{Projektname}Module,

{Projektname}.Renderengine">

<sharepoint

uri="http://www.my-sharepoint.de"

username="username"

password="password"

/>

</module>

If necessary, another attribute “domain” can be appended with the appropriate value.

8Tutorial: Working with SharePoint WebServices

4 Relocating authentication

4.2 Extending module

The configuration can be accessed in the module. An XML element “configuration” is

transferred to the method “Configure ()”as a second parameter. This contains all the XML

specified in the configuration within the <module> element. So in our case the <sharepoint>

element.

We now want to read out the attributes of our new element <sharepoint> and transfer them

to the extension in order to use them there for establishing a connection.

Extend the method “Configure()” of the class “{project name}Module” to include

the following code.

XmlElement sp = configuration["sharepoint"];

if (sp == null) throw new ConfigurationException("Element 'sharepoint' ist missing",

configuration);

string uri = sp.GetAttribute("uri");

string username = sp.GetAttribute("username");

string pw = sp.GetAttribute("password");

string domain = sp.GetAttribute("domain");

if (String.IsNullOrEmpty(uri) || String.IsNullOrEmpty(username) || String.IsNullOrEmpty(pw))

 throw new ConfigurationException("Sharepoint configuration is not correct.", configuration);

extensions = new ContosoExtension(uri, username, pw, domain);

To start with, we specifically access the <sharepoint> element. If it is not there, an appropriate

exception is thrown.

The relevant attributes are then read out and saved in variables. Here again, the necessary

values are checked first and an exception thrown if necessary.

Last but not least, the values are also transferred when creating the extension.

Instead of the exceptions, you can simply log an appropriate error if the website

is to also function without a correct SharePoint connection.

4.3 Extending extension

The transferred parameters must now be accepted in the constructor of the extension.

Extend/change the constructor of the extension as follows.

9Tutorial: Working with SharePoint WebServices

4 Relocating authentication

public ContosoExtension(string uri, string username, string password, string domain)

{

 lists.Credentials = !String.IsNullOrEmpty(domain) ? new NetworkCredential(username,

password, domain) : new NetworkCredential(username, password);

 lists.Url = uri + @"/_vti_bin/lists.asmx";

}

Depending on whether a domain is transferred, the NetworkCredentials are created with or

without this domain.The “uri” is used to define the correct URL for accessing the WebService.

10Tutorial: Working with SharePoint WebServices

4 Relocating authentication

