
Tutorial:
Developing transformations

Author: David Haasler

Table of contents
2Creating transformations for a »quotation«...1
3Literal methods..2
7Outputting object data...2.1
9Binary methods...3

10Creating transformations for the quotation collection......................................4
11Number of quotations..4.1
11Current time..4.2
12Calculating the index...4.3
13Outputting the respective quotation..4.4

Requirements
For you to be able to work through this tutorial, you should have a basic knowledge of

XSLT. If you would like to work through a tutorial on these topics first, we recommend the

tutorial of w3schools.com.

XSLT Tutorial von w3schools

Define Information Model

Description
The second part of the series shows how quickly and simply the recorded data can be utilised

by means of XSL transformations.

Note: The processing logic is created in a transformation container in the module context of

the onion.net Editor. A transformation is always assigned to a schema. It is understood here

as as an object-oriented method which, as is usual in programming, can be extended by

means of derivations and parameterized by means of method signatures.

Incidentally: The processing logic is recorded in onion.net as information. This is one of

numerous examples where onion.net has supported us with new solutions and extensions.

Signs and symbols

Boxes marked with an arrow symbol and a green border contains instruction of

what to do next.

This kind of boxes contains tips and tricks.

Source code is shown in blue boxes.

1Tutorial: Developing transformations

http://www.w3schools.com/xsl/
/language=en/60209/define-information-model

1 Creating transformations for a »quotation«
First of all, we create a transformation container below our quotation administration. All

quotation transformations are to be located there.

To do this, you need to switch to the module administration of our module quotation

management.

Right-click on the object quotation management.You now select transformation

container in the context menu and confirm your action. You can leave the

suggestion of transformations as the name for the container.

As an additional step, we need to define which data source the data for our transformations

come from.

For this purpose, create a new data source with the name onion.net through

right-clicking on transformations. Leave the type as Onion and return the object.

For purposes of clarity, related transformations should be grouped, which can be easily done

using transformation groups.

Create a transformation group with the title quotation management below the

data source.

We will next define which data type the transformation is to apply for.

To do this, right-click on the quotation management transformation group just

created and select the item Data type under New…. Select quotation here as

the name, since the transformation is to apply for a quotation.

2Tutorial: Developing transformations

1 Creating transformations for a »quotation«

No connection to the schema is established by the name alone.

Click on name in order to display the field. The schema must now be inserted

into this field.

Tip: Drag & drop in order to have the correct data types generated. This saves

time and prevents typing errors.

Expand the schemas up to the schema quotation and drag & and drop the

schema quotationmanagement/quotations/quotation into the name field of

the data type just created. Then return this.

An XML schema is now clearly allocated to the transformation.

2 Literal methods
We will now create a literal method for our data type. These are able to generate text-based

outputs.

To do this, right-click on the data type quotation and create a new literal method

from the context menu. Give this method the name default.

3Tutorial: Developing transformations

2 Literal methods

default is considered a default method for the transformation system, meaning that this

method is called if an object of this data type is to be displayed.

A number of settings for this method can be made in the dialogue. We must change the

access protection in this case. The access protection controls from where the method may

be called.

internal from other transformations

protected from .NET Code

public via public interfaces

For the default method, we select public as access modifier. We then confirm

the dialogue by clicking on Next.

The tab transformations will now open. The actual transformation is now written into the

featured code input field.

Check whether the cursor is in the code input field. Press [CTRL] + [Space].

4Tutorial: Developing transformations

2 Literal methods

This key combination will open an assistant for completing the XSL transformation.

XSLT is an extendable transformation language. The standardized EXSLT extensions are

found here as well as useful onion.net extensions containing for example methods for picture

manipulation or PDF generation.

Click on Update namespaces in the assistant, without selecting a value.

The following default transformation will be created:

5Tutorial: Developing transformations

2 Literal methods

<xsl:stylesheet version="1.0">

<xsl:output

method=""

omit-xml-declaration="yes"

indent="no"

/>

<xsl:template match="/"></xsl:template>

</xsl:stylesheet>

In the <xsl:output> element, enter xml into the method attribute. You enter the

desired output within the <xsl:template> element. We will make do with "Hello

world!" for the time being. Now save the transformation.

The complete transformation now looks as follows:

<xsl:stylesheet version="1.0">

<xsl:output

method="xml"

omit-xml-declaration="yes"

indent="no"

/>

<xsl:template match="/"> Hallo Welt! </xsl:template>

</xsl:stylesheet>

Before the template can be executed, the transformations of the module must be activated

on the web server. This change can be carried out via the onion.net Editor.

Right-click on the transformations node and select web server settings configure.

Select Preview in the dialogue that follows and confirm with Apply.

In order to now test the template, right-click on any quotation in the editorial

system, e.g. Quote Albert Einstein.

Since the editor has now found a default method for our quotation, it offers us the function

Preview in the context menu.

If you click on this, a dialogue will open with a link to the preview and the possibility to open

preview. If you click on the button, a browser window with the text "Hello world!" opens,

exactly as indicated in the transformation.

6Tutorial: Developing transformations

2 Literal methods

Tip: The pop-up blocker in your browser may possibly prevent the preview from

being opened. In this case, configure your browser to allow pop-ups for the

current page.

2.1 Outputting object data

The text "Hello world!" is now output for each object of the type quotation, i.e. for each

quotation. We now replace this text with actual values from the respective quotations. As the

first step, our transformation is to output the author.

Switch back to the literal method default of the data type quotation.

Tip: Unlike all previous objects, the literal method does not appear as a child

element in the tree structure on the left-hand side, but is located in the list view

on the top right (object structure window) when you select the appropriate data

type. The reason for this is clarity, since further information about the method

can be displayed at a glance in the list representation.

Each data object has various data views, each representing an aspect of the object. You

can change these in the field data view. no-data is set by default. In our case, we are collecting

our information from the data view content since we wish to access information from the

content of the object.

Enter the value content in the Configuration tab under the data view.

We will now process the quotation in accordance with our XML schema. The transformation

is to respond to the root node quotation and output the text content of the element author.

Tip: If you have not yet looked into XPath, now is a good time to read through

a relevant tutorial. You will find a good tutorial on the pages of

w3schools.com: XPath Tutorial

7Tutorial: Developing transformations

2 Literal methods

http://www.w3schools.com/xpath/

In the <xsl:template> element, change the attribute match with the XPath

expression that selects the root element quotation.

<xsl:template match="/quotation"></xsl:template>

The field with the name author is to now be output from quotation.

Tip: Some XSLT elements will now be introduced. There is a more detailed

description of the individual elements on the w3schools site for example: XSLT

Elements Reference

For this purpose, use the value-of element as follows:

<xsl:value-of select="author" />

Overall, the template block in the method then looks as follows:

<xsl:template match="/quotation">

<xsl:value-of select="author" />

</xsl:template>

Now save the method and call the preview of a quotation.

The author of the respective quotation is now output instead of "Hello world!".

In the next step we will output the quotation. The quotation is a formatable text based on

XHTML. We can copy this text including formatting instruction into the output.

Add the following lines to the template in the literal method, inserting them after

the <value-of> element:

once said:

<xsl:copy-of select="quote/node()" />

If you now open the preview you will, as well as the output of the author, also see the text

"once said:" followed by a quotation with formating.

8Tutorial: Developing transformations

2 Literal methods

http://www.w3schools.com/xsl/xsl_w3celementref.asp
http://www.w3schools.com/xsl/xsl_w3celementref.asp

3 Binary methods
We would next like to display the picture. The system offers binary methods for this purpose.

Now create a new binary method below quotation.This is given the title picture.

Under access protection, select public. We need the content as the data view.

The method we are now creating outputs the picture, precisely adapting it for the quotation,

and is not a method that can generally be used for image output.

<xsl:stylesheet

xmlns:b="http://onionworks.net/2004/renderengine/binary"

xmlns:onion="http://onionworks.net/2004/data"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0"

>

<xsl:output

method="xml"

omit-xml-declaration="yes"

indent="no"

/>

<xsl:template match="/quotation">

<xsl:value-of select="b.write(image)" />

<b:output mimeType="{image/@onion:mimeType}">

<b:webResponse expires="60" />

</b:output>

</xsl:template>

</xsl:stylesheet>

Two further namespaces are used in this stylesheet (b and onion). These must be added to

the stylesheet so that the appropriate places can be resolved.

For this purpose, position the cursor after xsl: stylesheet and press [CTRL] +

[Space]. Select http://onionworks.net/2004/data and

http://onionworks.net/2004/renderengine/binary. Update the namespaces and

then return the method.

Now the binary method picture will be available to you in your data type also.

We then generate an HTML img tag once a picture has been maintained. For referencing

our binary method we use the function c.binaryUri().

9Tutorial: Developing transformations

3 Binary methods

Tip: The function c.binaryUri() is explained in more detail in the reference, as

are other functions.You can open this here: c.binaryUri

Now go back into the literal method default and add the following entry to the

template after the <xsl:copy-of> element:

<xsl:if test="image">

</xsl:if>

Once you have saved this change and reopened the preview, you will see, under the quotation,

the picture maintained in the quotation.

4 Creating transformations for the quotation collection
We will next create a default method for our quotation collection.

To do this, create a new data type with the title collection below the

transformation group quotation management.

Click on the data type name and drag the schema collections/collection from

the schemas and into the field as described above. Then return the object.

Now create a literal method with the name default for the new data type

collection by right-clicking on the object.

Just like the other methods, this literal method is given the access protection public. We also

need the content of the object as a data view.

Fill out the fields Access modifier and Data view accordingly.

We will first of all take the default content without changes as the content of the transformation.

Create the default content with [CTRL] + [Space]. In <xsl:output> you merely

change the attribute method to xml. Then save the method.

Let's have a look at the quotation collection as a reminder.

10Tutorial: Developing transformations

4 Creating transformations for the quotation collection

Below the container quotation collections, click on the collection Celebrities.

The detail view will open on the right-hand side of the editor. Switch from the

currently active tab Form view (at the bottom of the screen) to the tab Xml raw

data on the far right.

Our new method is to deliver any quotation in seconds within the indicated interval.You can

directly see the attribute interval in this XML view by looking at the collection element.

Now reopen the literal method of the collection. Just as with the quotation, we

change the template element so that it selects the root element collection.

<xsl:template match="/collection"></xsl:template>

4.1 Number of quotations

We first output how many quotations are in the collection. We use the function count() for

this purpose.

Assume the following as the content of the template:

Number of quotations:

<xsl:value-of select="count(quotation)" />

Now take a look at the preview of the quotation collection Celebrities. The text "number of

quotations" is now output: 3.

4.2 Current time

We now output the current time under this.

11Tutorial: Developing transformations

4 Creating transformations for the quotation collection

To do this, enter the following extra line into the content of the template:

Current time:

<xsl:value-of select="dt:time()" />

Since we are using a date function, we need an extension of the namespace. This is done

simply by completing the code.

Place the cursor directly after <xsl:stylesheet and press [CTRL] + [Space]. In

the available namespaces assistant that now opens, select

http://exslt.org/dates-and-times and click on Update namespaces. The new

namespace will now be added for transformation. Save the transformation.

You can see that the current time is now also being output in the preview. If you press the

refresh button of the browser, you will see that the time changes each time.

4.3 Calculating the index

We will next calculate which quotation must be displayed at the current time. In the first step

we will switch on a second-by-second basis.

Extend the template as follows:

<xsl:variable name="index" select="floor(dt:seconds() mod count(quotation))

+1" />

To check, we will then output the index:

Current index:

<xsl:value-of select="$index" />

We can now see in the preview that, when pressing on the browser button Refresh, a different

index is displayed each second.

We now insert the maintained interval of the collection into the formula.

12Tutorial: Developing transformations

4 Creating transformations for the quotation collection

To do this, change the attribute select as follows when setting the variable index:

floor(dt:seconds() div @interval mod count(quotation)) +1

The preview check shows that the index changes every five seconds.

4.4 Outputting the respective quotation

Lastly, we call our default method of the xth quotation. This is done by the command

c.literalCall.

Extend the template to include the function call:

<c.literalCall id="{quotation[$index]}" />

The complete default method now looks as follows:

<xsl:stylesheet

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:dt="http://exslt.org/dates-and-times"

xmlns:onion="http://onionworks.net/2004/data"

version="1.0"

>

<xsl:output

method="xml"

omit-xml-declaration="yes"

indent="no"

/>

<xsl:template match="/collection"> Number of quotations:

<xsl:value-of select="count(quotation)" />

Current time:

<xsl:value-of select="dt:time()" />

<xsl:variable name="index" select="floor(dt:seconds() div @interval mod

count(quotation)) +1" />

Current index:

<xsl:value-of select="$index" />

<c.literalCall id="{quotation[$index]}" />

</xsl:template>

</xsl:stylesheet>

You've done it!

13Tutorial: Developing transformations

4 Creating transformations for the quotation collection

In the next part we will customize the editor.

14Tutorial: Developing transformations

4 Creating transformations for the quotation collection

