
Tutorial:
Editor customizing

Author: David Haasler

Table of contents
2Editor customizing...1
2Localizing identifiers..1.1
4Setting the display name and icon..1.2
5Object structure window..1.3

Requirements
No other prerequisites are needed for this tutorial than for the preceding tutorials.

Define Information Model

Developing transformations

Description
Part three shows how maintaining in the onion.net Editor can be improved with minimum

effort through self-explanatory and located identifiers, additional sortable list views and helpful

pictograms. This step is not absolutely necessary to the functioning of our quotation

administration, but it is worth doing.

Note: You will make the content creator's work easier through the assignment of pictograms

alone. It is no longer necessary to read each structure point.

Signs and symbols

Boxes marked with an arrow symbol and a green border contains instruction of

what to do next.

This kind of boxes contains tips and tricks.

Source code is shown in blue boxes.

1Tutorial: Editor customizing

/language=en/60209/define-information-model
/language=en/60273/developing-transformations

1 Editor customizing
After the schema has been created, all fields in the maintenance mask of the editorial system

have the element names allocated in the schema. In the case of a quotation, these are

quotation, author, quote and image.

The field labels can be adapted to the needs of the editor by way of localisations. The

localizations can be created on the respective schemas directly.

In the module, select the schema quotation and right-click in the top right-hand

section (object structure window) before then selecting Customizing. In the

dialogue, select runtime as the type and English as the language. Then select

Create.

1.1 Localizing identifiers

Language-specific settings of the data types are recorded in the objects "runtime.LANGUAGE",

in our case "runtime.en". The newly created configuration file is filled with the element

"o:settings" by default.

The data types of our schema are now localised within this element. To do this, we create a

section with the appropriate configuration for each component. We shall use the following

XML as our first example.

2Tutorial: Editor customizing

1 Editor customizing

<o:component aspect="Label" match=".quotation">

<label>Zitat</label>

</o:component>

Copy the XML fragment into the element o:settings and save your change.

Then switch to the editorial system and open a quotation. You should now be

displayed quotation as the object heading.

Depending on the kind of type to be localised, different notations are necessary in the attribute

match. The localization of elements begins with a dot followed by the element name. The

actual localization is then made with the tag Label. Further settings can then be made here

depending on the type.

Tip: If elements with different names are to be given the same designation, the

indication of all element names, separated by commas, is also possible in the

match attribute. (Example: match=".quotation, .quote")

With the same principle, we now locate the outstanding fields.

<o:component aspect="Label" match=".quotation, .quote">

<label>Zitat</label>

</o:component>

<o:component aspect="Label" match=".author">

<label>Autor</label>

</o:component>

<o:component aspect="Label" match=".image">

<label>Bild</label>

</o:component>

Copy the XML block and replace the previous content of the settings element.

Save the changes and check the result in the editorial system.

3Tutorial: Editor customizing

1 Editor customizing

1.2 Setting the display name and icon

If we create a new object in the editorial view, the entire schema name and folder icon will

always be shown. This can soon become unclear for a content creator if there are many

different objects.

onion.net therefore offers the possibility of giving the created schemas a display name and

an appropriate icon.

In the quotation administration module, switch to the schema quotation. Select the Settings

tab and then the Localisation tab underneath it. Select Quotation as the display name and

choose a suitable icon for the quotation.

Tip: The small icon should be 20x20 pixels in size; the large icon 32x32. Many

web pages offering free downloadable icons or iconsets for certain topics can

be found via relevant search engines.

Follow the exact same procedure for all root elements created:

quotations/container

Name: quotations

quotations/quotation

Name: quotation

collections/container

Name: quotation collections

collections/collection

Name: quotation collection

In order to localise the display name for other languages also, a display name

per language can be defined under Alternative display names.

4Tutorial: Editor customizing

1 Editor customizing

You can check the changes directly after saving.

In the content management, right-click on the root element and the names

quotation collections and quotations just allocated will already appear under

New.... Under quotations, you can create a quotation via New... under the

quotation collections, a quotation collection.

1.3 Object structure window

In the next step, we will define an object structure window. This marks the content of objects

in a list form and serves for clarity. The result will be a list view similar to the one displayed

when the editor module quotation management is selected.

For this purpose, create an object of the type Detail Views below the module

quotation management by right-click.Then assume the following default content

as the content.

5Tutorial: Editor customizing

1 Editor customizing

<childrenViews xmlns="http://onion.net/modulesystem"

xmlns:i18n="http://onion.net/common/i18n"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:onion="http://onionworks.net/2004/data"

xmlns:dw="http://onion.net/editor/detailview"

onion:schema="Onion:http://onion.net/2010/editor/modulesystem/schemata/childrenviews"

i18n:language="de"

>

<detailView schemaLocations="" applyToDerivations="false">

<columns>

<column

id="name"

label="name"

i18n:key="name"

/>

</columns>

<childType

schemaLocations=""

structureInvisible="false"

applyToDerivations="true"

>

<column ref="name">

<xsl:value-of select="onion:meta/@onion:name" />

</column>

</childType>

</detailView>

</childrenViews>

In order to define which schema the list view is to be used for, we enter the appropriate

schema into the schemaLocation attribute of the element <detailView>. In this step it is to

be a list view for our quotation container (quotations/container).

The most simple way to do this is again by dragging & dropping: drag the schema

quotations/container from the schema administration into the empty attribute

schemaLocation.

<detailView schemaLocation="quotationmanagement/quotations/container" />

The quotations are to be displayed as a child type (<childType>) for the list view. Drag the

schema quotations/quotation into the schemaLocation attribute of the <childType> element.

<childType

schemaLocation="quotationmanagement/quotations/quotation"

structureInvisible="false"

handleDerivations="true"

/>

6Tutorial: Editor customizing

1 Editor customizing

Our list view is to be given three columns. We want to represent the author, the quotation

and the picture in a table.

To do this, we adapt the content of the Columns elements so that it contains the

following elements.

<column

id="author"

label="Author"

i18n:key="author"

/>

<column

id="quote"

label="Quotation"

i18n:key="quote"

/>

<column

id="image"

label="Image"

i18n:key="image"

/>

By the ID of the respective column, indicate the name of the element from the schema to be

displayed.

Now customize the elements that have just been inserted:

column id="author"

Add a width of 15% (width= "15%")

column id="image"

Add a width of 5% (width= "5%")

Center the picture (align=“center“)

Define the schema node as a picture (type=“image“)

We will now describe how the quotation is represented in the list view.

For this purpose, we also need three <column> elements under <childType>.

In the attribute refs we enter the ID of the column allocated above under

<columns>. The desired output is now generated using XSLT. For the special

field image, we need an auxiliary method since a graphic is involved:

7Tutorial: Editor customizing

1 Editor customizing

dw:binaryUrl(c.id(), onion:content/quotation/image)

This call generates a uniform representation of 48x48 pixels for any picture. The complete

configuration now looks as follows:

8Tutorial: Editor customizing

1 Editor customizing

<childrenViews xmlns="http://onion.net/modulesystem"

xmlns:i18n="http://onion.net/common/i18n"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:onion="http://onionworks.net/2004/data"

xmlns:dw="http://onion.net/editor/detailview"

onion:schema="Onion:http://onion.net/2010/editor/modulesystem/schemata/childrenviews"

i18n:language="de"

>

<detailView schemaLocations="quotationmanagement/quotations/container"

applyToDerivations="false">

<columns>

<column

id="author"

label="Author"

i18n:key="author"

width="15%"

/>

<column

id="quote"

label="Quotation"

i18n:key="quote"

/>

<column

id="image"

label="Image"

i18n:key="image"

width="5%"

align="center"

type="image"

/>

</columns>

<childType

schemaLocations="quotationmanagement/quotations/quotation"

structureInvisible="false"

applyToDerivations="true"

>

<column ref="author">

<xsl:value-of select="onion:content/quotation/author" />

</column>

<column ref="quote">

<xsl:value-of select="onion:content/quotation/quote" />

</column>

<column ref="image">

<xsl:if test="string-length(onion:content/quotation/image) > 0">

<xsl:value-of select="dw:binaryUrl(c.id(),

onion:content/quotation/image)" />

</xsl:if>

</column>

</childType>

9Tutorial: Editor customizing

1 Editor customizing

</detailView>

</childrenViews>

Now update the editor and click on quotations on the left. You will now see the

list view that has just been created on the right above the familiar detail view.

Tip: Each list view can be custom-sorted. This can be done by simply clicking

once on the heading of the respective column.

You've done it!

With just a few configuration steps, we have created a customized maintenance environment

for the editor.

10Tutorial: Editor customizing

1 Editor customizing

