
Tutorial:
Building a simple website

Author: David Haasler

Table of contents
2Building an information model...1
2http://www.example.com...1.1
3Creating schema for abstract type node...1.2
5Creating a schema for the site..1.3
7Creating a schema for the page..1.4
7Child schemas...1.5
8Creating a website structure...2

10Editor customizing...3
10Icons and display names in the editorial view...3.1
10Adapting the labels of the editor fields..3.2
11Transformations...4
13Literal method »default«..4.1
16HTML basic structure for rendering...4.2
19Adding CSS...4.3
20Creating the »head« method...4.3.1
21Creating the »css« method...4.3.2
22Integrating into the »default« method..4.3.3
23Integrating and displaying the logo..4.4
23Binary »default« method...4.4.1
24Calling up the binary method for the logo...4.4.2
26Integrating into the »default« method..4.4.3
27Navigation...4.5
27Path navigation..4.5.1
27Creating the »path« method..4.5.1.1
30Main navigation...4.5.2
30Creating a »link« method..4.5.2.1
31Creating the »navigation« method..4.5.2.2
33Rendering the main navigation...4.5.2.3
35Outputting content...4.6
36Creating the »content« method...4.6.1
38Closing remarks..5

Requirements
You should have already familiarised yourself with the onion.net Editor and perhaps have

already gone through some tutorials for beginners.

Knowledge of XML, XML schema and XSLT as well as of any programming language is

helpful.

We recommend that you complete the following tutorials beforehand:

Define Information Model

Developing transformations

Editor customizing

Description
In this tutorial, knowledge from previous tutorials is deepened and expanded. A simple website

is structured step by step. The starting point is an empty onion.net system. The information

model, structure, editor localisation and rendering are gradually built.

The result is a simple website with a navigation, an Ariadne thread and of course maintainable

content. Thus the website only offers rudimentary functions, but is intended to make clear

the general structure and procedure in onion.net.

Signs and symbols

Boxes marked with an arrow symbol and a green border contains instruction of

what to do next.

This kind of boxes contains tips and tricks.

Source code is shown in blue boxes.

1Tutorial: Building a simple website

/language=en/60209/define-information-model
/language=en/60273/developing-transformations
/language=en/60331/editor-customizing

1 Building an information model
As a first step, we will create the schemas needed for the website. We need two different

types of page for our website:

a site and

a page.

The site is used as the welcome page of the website and there can only be one of these on

a website. In addition, contents can be maintained on the site , which are to apply for the

entire website and be inherited. For example, the logo is to be visible on each page of the

website. But the graphic itself should be stored in only one place as far as possible.

Under a site, it should be possible to create pages. The navigation is then later formed from

this structure automatically. It is obvious that no further sites are to be created under the site,

but just pages, i.e. content pages.

Since site and page are nevertheless very similar in principle, we will work with inheritance.

Many contents are to be maintained both for a site and for pages, e.g. free text in the contents

pane. Moreover, both types are visitable structure points. In order to implement the inheritance,

we create in the schemas an object node from which site and page are derived.

1.1 http://www.example.com

We first create a module for our tutorial as well as an abstract schema

http://www.example.com, under which the new schemas are to be grouped.

To do this, switch to the module administration in the onion.net Editor and create

a new module. Call it Tutorial-Website.

2Tutorial: Building a simple website

1 Building an information model

Add the schemata group within the module and create the abstract schema

http://www.example.com in it.

1.2 Creating schema for abstract type node

Underneath the schema http:// www. example.com you now create the schema

http://www.example.com/node. This is an abstract schema, since it is not to

be possible for concrete objects to be created by node.

When creating a new schema, the SchemaLocation of the parent schema is

always assumed as a suggestion in the assistant. In this case, the field Location

is therefore already initialised with http://www.example.com/.You now just have

to attach the name of the new schema to be created at the end.

3Tutorial: Building a simple website

1 Building an information model

After creating the schema, you now define the elements to be contained by this schema and

which are then available for both the site and page, derived from node. In our example there

is a rich text field intended to assume the content of a page.

An abstract schema receives the following content by default:

<xs:schema

xmlns:references="http://onionworks.net/2004/references"

xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:onion="http://onionworks.net/2004/schema"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified"

onion:schemaLocation="http://www.example.com"

></xs:schema>

Extend this content as follows:

<xs:schema

xmlns:xhtml="http://www.w3.org/1999/xhtml"

xmlns:references="http://onionworks.net/2004/references"

xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:onion="http://onionworks.net/2004/schema"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified"

onion:schemaLocation="http://example.com/node"

>

<xs:element name="node" type="node" />

<xs:complexType name="node">

<xs:sequence>

<xs:element name="text" type="xhtml:Flow" />

</xs:sequence>

</xs:complexType>

</xs:schema>

An element of the type node was added, the content of which was defined in the

»complexType name="node"«. It consists of an element text, which is of the type xhtml:Flow

and thus represents a rich text field.

The namespace xhtml has not yet been defined however, meaning saving the changes is

not possible. You therefore enter the xs:import instruction for the name area xhtml in the

second line:

<xs:import schemaLocation="http://www.w3.org/2002/08/xhtml/xhtml1-strict.xsd"

namespace="http://www.w3.org/1999/xhtml" />

The node schema then looks as follows:

4Tutorial: Building a simple website

1 Building an information model

<xs:schema

xmlns:xhtml="http://www.w3.org/1999/xhtml"

xmlns:references="http://onionworks.net/2004/references"

xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:onion="http://onionworks.net/2004/schema"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified"

onion:schemaLocation="http://example.com/node"

>

<xs:import schemaLocation="http://www.w3.org/2002/08/xhtml/xhtml1-strict.xsd"

namespace="http://www.w3.org/1999/xhtml" />

<xs:element name="node" type="node" />

<xs:complexType name="node">

<xs:sequence>

<xs:element name="text" type="xhtml:Flow" />

</xs:sequence>

</xs:complexType>

</xs:schema>

1.3 Creating a schema for the site

Now create the schema site below the schema node. Site is to be derived from

node. For this purpose, select the option Derive content model in the dialogue

Create new schema. In a drop-down box, you will now be offered schemas which

you can derive. In our case this is merely node (ComplexType): Select this.

5Tutorial: Building a simple website

1 Building an information model

The schema of the derived object now looks as follows:

<xs:schema

xmlns:references="http://onionworks.net/2004/references"

xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:onion="http://onionworks.net/2004/schema"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified"

onion:schemaLocation="http://www.example.com/node/site"

>

<xs:redefine schemaLocation="http://www.example.com/node">

<xs:complexType name="node">

<xs:complexContent>

<xs:extension base="node"></xs:extension>

</xs:complexContent>

</xs:complexType>

</xs:redefine>

</xs:schema>

A site is to also be able to contain the logo of the website.

6Tutorial: Building a simple website

1 Building an information model

For this purpose, extend the element that is still empty <xs:extension

base="node"> to include the following attribute:

<xs:attribute name="logo" type="xlink:binaryReference" />

In order to be able to use these types, the xlink schema must be imported. In this case, you

can drag the schema both into the attribute schemaLocation and namespace:

<xs:import schemaLocation="http://www.w3.org/1999/xlink"

namespace="http://www.w3.org/1999/xlink" />

Overall, the content should now look as follows:

<xs:schema

xmlns:references="http://onionworks.net/2004/references"

xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:onion="http://onionworks.net/2004/schema"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified"

onion:schemaLocation="http://www.example.com/node/site"

>

<xs:import schemaLocation="http://www.w3.org/1999/xlink"

namespace="http://www.w3.org/1999/xlink" />

<xs:redefine schemaLocation="http://www.example.com/node">

<xs:complexType name="node">

<xs:complexContent>

<xs:extension base="node">

<xs:attribute name="logo" type="xlink:binaryReference" />

</xs:extension>

</xs:complexContent>

</xs:complexType>

</xs:redefine>

</xs:schema>

1.4 Creating a schema for the page

Now create a further derived schema page below node. Proceed as previously described

under site.

The page does not need any elements or attributes other than node - the default content of

the derived schema can therefore be used.

1.5 Child schemas

Next, define which schemas may be created under which other schemas. First of all, it is to

be possible to create a site below the onion.net root element, in order for a website of this

type to be created in the onion.net Editor at all.

7Tutorial: Building a simple website

1 Building an information model

Navigate to the schema site. Then click on the tab Structural reference and add

the systemroot schema (http://onionworks.net/2004/schema/systemroot).

Next, it must be defined that pages may be created under a site as well as further pages

underneath a page.

Click the tab Children schemata in the site schema and drag the schema

page into the white area.

It should also be possible to create a page schema below a page schema. Page-schemata

must therefore also be defined as child schemas of a page schema. Proceed here as with

the site schema.

2 Creating a website structure
You can now begin creating the first documents of your website. We choose the following

simple structure:

Homepage

Services

Service group 1

Service group 2

Products

Product group 1

8Tutorial: Building a simple website

2 Creating a website structure

Product group 2

Contact

Site notice

In order to create this structure, you must proceed as follows:

Switch to the editorial view. Now right-click on the root node (/) and select

http://www.example.com/node/site. Allocate the name Homepage. As you can

see, you can now already maintain content. Keep the content as simple as

possible for the moment - a short sentence is enough. (e.g. "Lorem ipsum dolor

sit amet."). Now save the document.

It will appear directly at the very bottom of the tree view with the name Homepage.You can

drag and drop it right to the top of the tree view.

A grey bar will show you where the object will be put when you release the mouse

button.

Now create further pages below the Homepage by clicking on the document

Homepage with the right-hand mouse button and creating a

http://www.example.com/node/page underneath it. Allocate a clear name for the

pages also and maintain a short text on the page. Create the documents as

suggested at the top of the tree structure.

9Tutorial: Building a simple website

2 Creating a website structure

3 Editor customizing
When creating the structure points you must have noticed that, in the context menu and in

the object detail window, the terms and schema locations were displayed which we had

previously allocated in the schema editor. This very technical display is not very pleasant for

editors in particular. Moreover, the objects in the tree cannot be distinguished so well since

they all have the same icon. We will therefore adapt the editor next.

3.1 Icons and display names in the editorial view

First of all, the objects that can be created by means of the schemas site and page are to

be given icons and self-explanatory names. In this way they can be distinguished between

better in the editor.

To do this, we switch to the module view and select the schema site. Select the

Settings tab and then the sub-tab Localization. Select Site as the display name

and allocate meaningful icons.

Many web pages offering free downloadable icons or iconsets for certain topics

can be found on the web using relevant search engines.

Follow the same procedure for the schemas page and node and allocate the

names Page and Node.

3.2 Adapting the labels of the editor fields

So that the schemas also receive self-explanatory names when created, we now add language

configurations.

To do this, navigate within the module view to the schema site. Right-click in the

Configuration section (upper right side) and select Customizing. Select English as

the language.

10Tutorial: Building a simple website

3 Editor customizing

Insert the following code example within the < o: settings> element:

<o:component aspect="Label" match="@logo">

<label>Logo</label>

</o:component>

Follow the exact same procedure for the schema node and enter the following

code:

<o:component aspect="Label" match=".node">

<label>Page</label>

</o:component>

<o:component aspect="Label" match="#node .text">

<label>Content</label>

</o:component>

4 Transformations
Your website has now been created. Only it cannot yet be shown in the browser. We will

now change this by starting to create transformations that will ensure the output of contents

into the browser.

First of all, we will create a transformation group. All transformations for the tutorial website

are to be located there.

11Tutorial: Building a simple website

4 Transformations

For this purpose, right-click on the root node Tutorial-Website in the module

view and select transformation container. Leave the name

as transformations. Now right-click on the node that has just been created and

select data source. Indicate Onion as the name. The type Onion is retained.

Save the data source. Now create a transformation group by right-clicking

beneath the data source Onion and call it http://www.example.com before

then saving it.

Transformation groups are used for bundling logically identical data types

Now create the first transformation underneath.

To do this, right-click on the transformation group that has just been created and

select the item Data type from the context menu New... Select node here, since

the transformation is to apply for our node schema.

No connection to the schema is established by the title alone.

Click within the data type node on Name in order to create the optional field.

The schema must now be inserted into this field. As before, you do this

by dragging and dropping from the schema administration. So drag the schema

node into the Name field and then return both the data type and the

transformation group.

12Tutorial: Building a simple website

4 Transformations

An XML schema is now clearly allocated to the transformation.

Now, in a similar way, create below node a further data type, which you name

site. Drag the appropriate schema into the Name field. Then return this data

type also.

So that you can now preview the transformations, the render engine on which you wish to

allow a preview must be defined.

To do this, right-click on Transformations within the structure tree and select the

point Configure in the context menu Web server settings. Now select Preview

and confirm the dialogue by clicking on the button Apply.

4.1 Literal method »default«

We will now create a literal method for our data type. Literal methods are able to create

text-based outputs (e.g. HTML) in the web browser.

To do this, right-click on the data type node and create a new literal method

from the context menu. Give this method the name default.

A number of settings for this method can be made under the title.We must change the access

modifier in this case. The access modifier controls from where the method may be called.

13Tutorial: Building a simple website

4 Transformations

DescriptionAccess modifier

Can only be called from other transformationsInternal

Can be called from other transformations and

from .net code (e.g. extensions)

Protected

Can be called via other transformations, from

.net code and public interfaces (direct call

using URL)

Public

For the default method, we select public .

14Tutorial: Building a simple website

4 Transformations

A method with the name default is considered as a default method for the

transformation system. As soon as a public literal method with this name is

available for a data type, the point Preview appears automatically in the context

menu.This opens, in a new browser window, the rendering of the method default

for the appropriate object.

How our data is displayed can now be defined in the Transformation tab.

Click in the Transformation tab and press [CTRL] + [Space]. Confirm the dialogue

without making a selection.

The following default transformation will be created:

<xsl:stylesheet

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:onion="http://onionworks.net/2004/data"

version="1.0"

>

<xsl:output

method=""

omit-xml-declaration="yes"

indent="no"

/>

<xsl:template match="/"></xsl:template>

</xsl:stylesheet>

In the <xsl:output> element, enter the value xml into the method attribute. You

enter the desired output within the <xsl:template> element.We will make do with

"Hello world!" for the time being. Now save the transformation.

The complete transformation now looks as follows:

15Tutorial: Building a simple website

4 Transformations

<xsl:stylesheet

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:onion="http://onionworks.net/2004/data"

version="1.0"

>

<xsl:output

method="xml"

omit-xml-declaration="yes"

indent="no"

/>

<xsl:template match="/"> Hello World </xsl:template>

</xsl:stylesheet>

In order to test the template directly, right click, in the content management, on

the site or a page you created further above. Since both the site and the page

are derived from node, this method default is taken for outputting if there is no

direct default method for the schema site or page.

Since the editor has now found a default method for our website documents, it offers us the

function Preview in the context menu.

You may have to return the default method once first and refresh the editor by

pressing F5 in order to be displayed the Preview entry in the context menu.

If you click on this menu item, a browser window with the text "Hello world!" opens, exactly

as indicated in the transformation.

4.2 HTML basic structure for rendering

But we will of course not settle for the output "Hello world!". Instead, an HTML basic structure

is to be output as early as in the first step, and we will gradually integrate the functionalities

into this, such as navigation.

Since we would now like to output data from the displayed documents, we must change the

data view of the method default.

To do this, click on the literal method default of the node data type. Select the

value meta as the Data view in the tab Configuration. Save the changes.

16Tutorial: Building a simple website

4 Transformations

Now modify the content of the transformation as follows:

17Tutorial: Building a simple website

4 Transformations

<xsl:stylesheet

xmlns:web="http://onionworks.net/2004/renderengine/web"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:onion="http://onionworks.net/2004/data"

version="1.0"

>

<xsl:output

method="xml"

omit-xml-declaration="yes"

indent="no"

doctype-system="about:legacy-compat"

encoding="utf-8"

/>

<xsl:template match="/onion:object">

<web:responseHeaders expires="0" />

<html lang="de" xml:lang="de">

<head>

<title>

<xsl:value-of select="@onion:name" />

</title>

</head>

<body>

<div id="page">

<div id="contentNav">

<div id="header">

<p>Hier erscheint der Header</p>

</div>

<div id="path">

Hier fügen wir eine Pfadnavigation ein

</div>

<div id="navigation">

<p>Hier kommt die Navigation hin</p>

</div>

<div id="content">

<h1>

<xsl:value-of select="@onion:name" />

</h1>

<p>In diesem Bereich wird der Content der Seite ausgegeben</p>

</div>

<br class="clearBoth" />

</div>

</div>

</body>

</html>

</xsl:template>

</xsl:stylesheet>

18Tutorial: Building a simple website

4 Transformations

Apart from changes to the <xsl:output> element for the purpose of rendering the correct

doctype and inserting the element <web:reponseHeaders /> for setting caching information,

this template mainly contains static HTML code.The only exception is the output of the page

title both in the title element in the header and in the div with the ID content.

Through having selected meta as the data view, we can access the attribute onion:name.

The value we indicated in the field title as the document name will be in this attribute.

Now open the preview of a document of your website.

You will now already see the HTML basic structure. As well as the dummy texts, which

identifies the sections of the website, some first fields of the documents are already output.

In the title of the website on the one hand as well as in the heading h1.

4.3 Adding CSS

Next, the appearance of the HTML is to be improved by means of CSS. We could now insert

a <style type="text/css"> area into the <head> area in the default method, but that would

make the method unnecessarily long and unclear. Instead, we will create a new literal method

head, which calls a new literal method css.

We will create the method css under the data type site and not under node. This is for the

following reason: The CSS contains no dynamic contents and is therefore exactly the same

for each page. It should therefore be accessible under one URL only and not under a URL

for each page of the website.

Due to inheritance however, when rendering a document, the method is looked for first in

the data type corresponding to the document (e.g. a page). If there is no suitable method in

this data type, the superordinate data type (in this case node) will be searched owing to the

inheritance.

We therefore go via the intermediate method head, which then calls the css method on the

site or creates the URL for integrating the stylesheet.

19Tutorial: Building a simple website

4 Transformations

4.3.1 Creating the »head« method
We will call the method css in a further method head and in so doing proceed as follows:

Since we would like to find the site from a page, we create,

under the data type node, a method head, which does

nothing more than call a method with the same name on

the parent element.Thus we go upwards along the structure,

since the method node.head() applies both for the site and

for the page.

So that this “going upwards” stops automatically at the site,

we create the actual method head there we would like to

call, since the method css is then ultimately called for the site in this method. We therefore

also store this method css on site.

We begin with the actual method head, which is to integrate the CSS.

Now create the literal method head in the data type site. This does not have to

be public, since it is only called internally. Also, no data view needs to be indicated

since no data of the documents needs to be accessed.

In this method, an HTML <link> element is generated, which we will later load in the default

method within the HTML head section.We do this via the following XSLT in the head method:

<xsl:stylesheet

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:onion="http://onionworks.net/2004/data"

version="1.0"

>

<xsl:output

method="xml"

omit-xml-declaration="yes"

indent="no"

/>

<xsl:template match="/">

<link

type="text/css"

rel="stylesheet"

href="{c.literalUri('css')}"

media="screen, projection"

/>

</xsl:template>

</xsl:stylesheet>

20Tutorial: Building a simple website

4 Transformations

There is still no method head for the page. As described above, we will create a method

under node for this. This has the advantage that it is also directly applicable for future page

types that are derived from node.

Now create a literal method head below node.This requires the data view meta.

Then assume the following transformation and save the method.

<xsl:stylesheet

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:onion="http://onionworks.net/2004/data"

version="1.0"

>

<xsl:output

method="xml"

omit-xml-declaration="yes"

indent="no"

/>

<xsl:template match="/onion:object">

<c.literalCall id="{@onion:parent}" method="head" />

</xsl:template>

</xsl:stylesheet>

An interesting thing about this method is the c.literalCall. The method head is called here,

but with the ID of the parent document. So if the method is called on a page, it calls itself (or

a method with the same name) on the parent. If the parent is the site, the method head is

taken, which is to be found under site. This then takes care of the integration.

4.3.2 Creating the »css« method
As an href attribute of the element, a link to the literal method css is built here. We will now

create this in the following.

Create the literal method css under the data type site. It must be possible for

this method to be called publicly and it must have text/css as a MIME type. Enter

the following content:

21Tutorial: Building a simple website

4 Transformations

<xsl:stylesheet

xmlns:web="http://onionworks.net/2004/renderengine/web"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:onion="http://onionworks.net/2004/data"

version="1.0"

>

<xsl:output method="text" />

<xsl:template match="/">

<web:responseHeaders expires="60" />

body { color: #374041; background-color: #f5f5f5; font-family: Verdana, Arial,

sans; font-size: 12px; } /* #### reset styles #### */ * { margin: 0; padding:

0; } /* #### Layout #### */ #page { width: 980px; margin: 0 auto;

background-color: #fff; margin-top:5em;} /* Header */ #header #logo { border:

0 none; margin: 1em;} /* Content */ #content { margin: 2em 2em 0 18em; padding:

1em 2em 2em 2em; -moz-border-radius: 10px; -webkit-border-radius: 10px; border:

1px solid #707070; background: -moz-linear-gradient(0 0, #ebf3fc, #fff);

background: -webkit-gradient(linear, 0 0, 0 100%, from(#ebf3fc), to(#fff));

/* IE 5.5 - IE 7 */ filter:

progid:DXImageTransform.Microsoft.gradient(startColorstr=#ebf3fc,

endColorstr=#FFFFFFFF); /* IE 8 */ -ms-filter:

"progid:DXImageTransform.Microsoft.gradient(startColorstr=#ebf3fc,

endColorstr=#FFFFFFFF)"; } /* #### Styling #### */ h1, h2, h3, h4, h5, h6 {

color: #b51d48; text-shadow: 2px 2px 2px #99a7a8; } h1 { font-size: 2em;

padding-bottom: 0.2em; border-bottom: 1px solid #374041; } p, ol, ul, h1, h2,

h3 { margin-bottom: 0.5em; } ol, ul { margin-left: 3em; } a { text-decoration:

none; color: #b51d48; } a.active { font-weight: bold; } a:hover {

text-decoration: underline; } #contentNav { border: 1px solid #707070; overflow:

hidden; } /* Navigation */ #path { font-size: 0.9em; overflow: hidden; padding:

0.5em; border-top: 1px solid #707070; border-bottom: 1px solid #707070; }

#path ul { list-style: none; margin-left: 0; } #path li { float: left;

margin-right: 1em; } #navigation { float: left; margin-top: 1em; width: 150px;

padding-left: 0.5em; } #navigation ul { list-style: none; margin-left: 0; }

#navigation ul ul { margin-left: 1em; } #navigation li a { display: block;

line-height: 1.2em; padding: 0.5em 0; } /* #### helper #### */ .clearBoth {

clear: both; } </xsl:template>

</xsl:stylesheet>

4.3.3 Integrating into the »default« method
We now load the method head in our default method of the data type node.

To do this, extend the element <head> in the default method to include the

following call: <c.literalCall method="head" />

Overall, the head section in the default method will then look as follows:

22Tutorial: Building a simple website

4 Transformations

<head>

<title>

<xsl:value-of select="@onion:name" />

</title>

<c.literalCall method="head" />

</head>

If you now preview one of the website documents, the stylesheets will now also be used,

causing the website to be displayed differently.

4.4 Integrating and displaying the logo

In the schema site you have the possibility of integrating a logo. This is to also be integrated

into the output in this step.

First load a logo into your site Homepage and save the document. Check out

the Homepage for this purpose (if you have not already done so) and click on

the field logo in order to show it. Then click on select file in order to select a

graphic from the local computer. Use a graphic format for this which can be

shown on the web, i.e. JPG (RGB colour space), PNG or GIF. So that the layout

does not go to pieces, do not select too high a picture size. A size of 350x200

pixels for example would be suitable.

In order to show a binary document, we also need a binary method (as opposed to the literal

method, which can output text).

4.4.1 Binary »default« method

Create a new binary methodwith the name of binary.default for the data type

node. Indicate public as the access modifier and content as the data view. Use

the default method below. This method simply delivers any kind of binary file

and transfers it to the browser.

23Tutorial: Building a simple website

4 Transformations

The prefix binary. is necessary in the file name since there is already a method

with the name default on the data type node. The prefix binary. can therefore

be placed in front of binary methods and is only evaluated systemically.In the

object structure window you will see that the prefix does not have any influence

on the actual method name. The same applies for XML methods with the prefix

xml.

<xsl:stylesheet

xmlns:reg="http://exslt.org/regular-expressions"

xmlns:b="http://onionworks.net/2004/renderengine/binary"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:onion="http://onionworks.net/2004/data"

version="1.0"

>

<xsl:param name="select" />

<xsl:template match="/">

<xsl:variable name="ref" select="c.resolveNode($select)" />

<xsl:value-of select="b.write($ref)" />

<xsl:variable name="mimeType">

<xsl:choose>

<xsl:when test="count(reg:match($select, 'A\d', 'gi')) > 0">

<xsl:variable name="element"

select="c.resolveNode(substring-before($select, 'A'))" />

<xsl:value-of select="$element/@*[local-name() =

concat(local-name($ref), '.mimeType')]" />

</xsl:when>

<xsl:otherwise>

<xsl:value-of select="$ref/@onion:mimeType" />

</xsl:otherwise>

</xsl:choose>

</xsl:variable>

<b:output mimeType="{$mimeType}">

<b:webResponse expires="60" />

</b:output>

</xsl:template>

</xsl:stylesheet>

4.4.2 Calling up the binary method for the logo
We now have a method that can output binary files. In the next step we will create a method

which integrates this logo so that it can be shown on our website.

We follow exactly the same procedure here as with the head method, ensuring that under

the data type node there is a method logo which forwards the query to the parent. On the

data type site on the other hand, there is then the logo method, which ensures the output

of the logo.

24Tutorial: Building a simple website

4 Transformations

In this way, the logo is inherited from the welcome page to all subpages. The

same also applies for the CSS.

In the data type site, create a literal method logo with the Data viewcontent

and the following content:

<xsl:stylesheet

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:onion="http://onionworks.net/2004/data"

version="1.0"

>

<xsl:output

method="xml"

omit-xml-declaration="yes"

indent="no"

/>

<xsl:template match="/node">

<xsl:if test="count(@logo)">

<img

src="{c.binaryUri(c.id(), 'default', 'select',

c.generateId(@logo))}"

alt=""

id="logo"

/>

</xsl:if>

</xsl:template>

</xsl:stylesheet>

In this method it is first checked whether the attribute @logo is filled at all. Since the attribute is

not a mandatory field, it can also be empty. Without a check we would then have a broken

image.

If a logo is present, it is integrated as a picture. In addition, the logo is linked with the welcome

page. Calling c.literalUri() without specifying further parameters causes a URL to be built

on the current document using the method default() .

Since the current document is the site, the logo is always linked with the welcome

page.

25Tutorial: Building a simple website

4 Transformations

What is interesting when integrating the logo as a picture is the filling of the src attribute . A

binary method is called here which has the name default. This is our very binary.default

created a short while ago for the displaying of binary data. As you can see, we do not need

to indicate the prefix binary. here either. The parameter select is filled with the element of

the document containing the binary data.

For a more detailed description of the method c.generateId(), we recommend

the extension reference.

So that the method can work its way up to the site when a page is called, we need a logo

method below node (similar to the head method).

Create the literal method logo in the data type node. In doing so, select meta

as the data view. The content is nearly identical to that of the head method:

<xsl:stylesheet

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:onion="http://onionworks.net/2004/data"

version="1.0"

>

<xsl:output

method="xml"

omit-xml-declaration="yes"

indent="no"

/>

<xsl:template match="/onion:object">

<c.literalCall id="{@onion:parent}" method="logo" />

</xsl:template>

</xsl:stylesheet>

4.4.3 Integrating into the »default« method
The call of the logo method must now be integrated into our HTML structure in the default

method.

To do this, replace the content of the div element with the id attribute

header by calling the literal method logo: <c.literalCall method="logo" />

If you now preview a page or the site, the logo is rendered into the head area instead of

the text. Moreover, it is linked with the site, meaning the welcome page can be switched to

from every page.

26Tutorial: Building a simple website

4 Transformations

4.5 Navigation

Two navigations are to now be created automatically using the structure of the created

documents.

First, we of course need a default navigation, which shows all menu items of the first level

below the site, all children of the menu item currently selected as well as all siblings of the

levels inbetween. It serves for moving within the page structure, i.e. for “surfing” the website.

Secondly, we want to create a path navigation which shows all documents from the welcome

page to the current page. This navigation is also called "Ariadne thread" or "breadcrumb

path". It serves for the user’s orientation, since it shows him the path to the current page at

all times.

Since creating the path navigation is a bit simpler, we shall begin with this.

4.5.1 Path navigation
The path navigation represents the click path to the current page. This means that you

basically only need to go one level upward each time from the current page up to the site in

order to structure the path navigation.The illustration shows as an example the path navigation

for the page Product group 2.

Like with the method head, we will structure a recursion. To do this, we create a method

path which is called time and again on the respective parent. The first call (on the lowest

page) only renders the title of the page that is not linked. The title of the page is also linked

on the parent pages. Controlling whether a link is to be created or not takes place via

a parameter which is transferred to the method at the time of calling. This is set to false by

default (so also at the time of the first call), and is then explicitly transferred with true at the

time of the parent calls.

So that the sequence is correct and the bottom page is not rendered first, the link is only

actually output in the return of the recursion.

4.5.1.1 Creating the »path« method

Create a literal methodpath under the data type node. This requires the data

view meta in order to access the parent.

27Tutorial: Building a simple website

4 Transformations

<xsl:stylesheet

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:onion="http://onionworks.net/2004/data"

version="1.0"

>

<xsl:param

name="link"

c.type="Boolean"

c.impliedValue="false"

/>

<xsl:output

method="xml"

omit-xml-declaration="yes"

indent="yes"

/>

<xsl:template match="/onion:object">

<xsl:call-template name="renderParent" />

<xsl:choose>

<xsl:when test="$link">

<xsl:value-of select="@onion:name" />

</xsl:when>

<xsl:otherwise>

<xsl:value-of select="@onion:name" />

</xsl:otherwise>

</xsl:choose>

</xsl:template>

<xsl:template name="renderParent">

<c.literalCall

id="{@onion:parent}"

method="path"

link="true"

/>

</xsl:template>

</xsl:stylesheet>

This XSLT is divided into two templates. The first is the default template, which is called via

the <xsl:template match="..."> element. First of all, the template with the name renderParent

is called.You will find this at the end of the method.

In this template, similarly to the head method, the method of the same name path is called

again with the ID of the parent. The recursion is thus initiated here.

This is done until an own method path is found again under site and the recursion

consequently stopped, since no further calls are taking place.

28Tutorial: Building a simple website

4 Transformations

After the template call the title of the current object is then output. The link is created, or not

created, depending on the control parameter link. Because this instruction only stands for

the parent after the rendering, the correct sequence is created from top to bottom.

Since we want to create a semantically correct HTML, our path navigation must be a list.

Therefore each path element is surrounded by a li element. The necessary ul element is

added at the time of the initial call, which takes place in the default method.

Create a literal method path in the data type site. This requires the data

viewmeta. Assume the following content:

<xsl:stylesheet

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:onion="http://onionworks.net/2004/data"

version="1.0"

>

<xsl:import href="../path" />

<xsl:template name="renderParent" />

</xsl:stylesheet>

This method imports the content of the method node.path() (searching is carried out in the

data types situated hierarchically above due to the "../" placed in front), but overwrites the

template renderParent contained in it with an empty template. This means the output of the

current document title takes place, but the call of the method path of the parent no longer

does.

The import of the “general” method from node has the advantage that the markup

stands for an element of the path navigation at only a single point. If

something changes, e.g. a class is added to the li element, or the text is to be

surrounded with a span element, this only has to be changed in one place.

Change the default method as follows: Replace the content of the div element

with the id attribute path by calling the literal method path with a surrounding

ul element and a describing text:

29Tutorial: Building a simple website

4 Transformations

<xsl:value-of select="'Sie befinden sich hier: '" />

<c.literalCall method="path" />

If you now call up a preview, you can see the clickable path navigation.

4.5.2 Main navigation
In the next step we will create the navigation. The navigation structure essentially consists

of two parts:

One part is the output of all pages and subpages starting from the welcome

page.This is relatively simple.We just need to call one method on the welcome

page and then go through all children recursively. However, this is not exactly

the effect we want to have. The sub-navigation of a page is to only be shown

if we are on the page. The navigation should be identical to the illustration on

the right. You can see at a glance: we are on the page Products. Therefore

the two subpages can also be seen. Although the page Services also has

subpages, these are not displayed however. For this functionality we need to know which

path we are in.

The second part, which is needed for the navigation rendering, is therefore based on the

path navigation from the last chapter. For this part, we use a method navigation,

which collects all documents from the current document up to the site. For the actual rendering

of the navigation, the method navigation.render is then used. Called on the site at first, it

goes through all children and highlights the current page if necessary or initiates the rendering

of the sub-navigation.

4.5.2.1 Creating a »link« method

Since we must create a link for the respective navigation point in several places from the

recursion, we first create a method link, which assumes this task. The reason for this is that

the information from the data view meta is needed for creating the link (title). For building

the structure however, the children must equally be gone through, for which the data view

children is used.

For the data type node, create a literal method link with the data view meta.

30Tutorial: Building a simple website

4 Transformations

<xsl:stylesheet

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:onion="http://onionworks.net/2004/data"

version="1.0"

>

<xsl:output

method="xml"

omit-xml-declaration="yes"

indent="no"

/>

<xsl:param

name="highlight"

c.optional="true"

c.type="Boolean"

/>

<xsl:template match="/onion:object">

<xsl:if test="$highlight">

<xsl:attribute name="class">active</xsl:attribute>

</xsl:if>

<xsl:value-of select="@onion:name" />

</xsl:template>

</xsl:stylesheet>

4.5.2.2 Creating the »navigation« method

Under node, create the literal method navigation. This requires the data view

meta. Assume the following transformation:

31Tutorial: Building a simple website

4 Transformations

<xsl:stylesheet

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:onion="http://onionworks.net/2004/data"

version="1.0"

>

<xsl:param name="pathItems" c.impliedValue="" />

<xsl:output

method="xml"

omit-xml-declaration="yes"

indent="no"

/>

<xsl:template match="/onion:object">

<c.literalCall

id="{@onion:parent}"

method="navigation"

pathItems="{concat(c.id(), ' ', $pathItems)}"

/>

</xsl:template>

</xsl:stylesheet>

This method does nothing more than the path method for our path navigation: It collects the

pages of the click path from the current document to the site. However, unlike with the path

navigation, we do not want to output this directly but process it further afterwards. Therefore

the path elements are not output directly as list elements, but collected in the parameter

pathItems . Each page of the click path extends this list to include its own ID at the beginning.

If the method is then called on the site, the parameter contains, read from left to right, the

Ids of the pages on which the user has clicked. These are simply separated with a blank. On

the site, pathItems then contains roughly the following example value:

onion://data/objects/123 onion://data/objects/456 onion://data/objects/789

Now create a literal method for the data type site. Call this navigation and do

not indicate a data view.

32Tutorial: Building a simple website

4 Transformations

<xsl:stylesheet

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:onion="http://onionworks.net/2004/data"

version="1.0"

>

<xsl:param name="pathItems" c.impliedValue="" />

<xsl:output

method="xml"

omit-xml-declaration="yes"

indent="no"

/>

<xsl:template match="/">

<c.literalCall method="navigation.render" pathItems="{$pathItems}" />

</xsl:template>

</xsl:stylesheet>

4.5.2.3 Rendering the main navigation

Now we will go about rendering the navigation. After we have gone through the click path

from the bottom to the top via the method navigation, we now begin building the navigation

on the welcome page via the method navigation.render .

Now create the literal method navigation.render for the data type node. Use

children as the data view, since the child elements of the current menu item

are to be displayed for navigation.

33Tutorial: Building a simple website

4 Transformations

<xsl:stylesheet

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:onion="http://onionworks.net/2004/data"

version="1.0"

>

<xsl:param name="pathItems" />

<xsl:output

method="xml"

omit-xml-declaration="yes"

indent="no"

/>

<xsl:template match="/onion:children">

<xsl:variable name="currentPathItem" select="substring-before($pathItems,

' ')" />

<xsl:variable name="followingPathItems" select="substring-after($pathItems,

' ')" />

<xsl:if test="onion:object">

<xsl:for-each select="onion:object">

<xsl:choose>

<xsl:when test="@onion:href = $currentPathItem">

<c.literalCall

id="{@onion:href}"

method="link"

highlight="true"

/>

<c.literalCall

id="{@onion:href}"

method="navigation.render"

pathItems="{$followingPathItems}"

/>

</xsl:when>

<xsl:otherwise>

<c.literalCall id="{@onion:href}" method="link" />

</xsl:otherwise>

</xsl:choose>

</xsl:for-each>

</xsl:if>

</xsl:template>

</xsl:stylesheet>

Upon entering the method, the parameter pathItems contains the documents of the click

path. The first ID in it represents exactly the active page of the first navigation level. Based

on the above illustration, that would be the ID of the Products page.

34Tutorial: Building a simple website

4 Transformations

This ID is saved in the variable currentPathItem. The rest is saved in the variable

followingPathItems for later processing. We then go through all children of the current node.

In the case of the welcome page, Services, Products, Contact and Site Notice. For each of

these documents we check whether the element in the variable currentPathItem is concerned

here, i.e. the active page in the first level.

If this is not the case, we simply call the auxiliary method link, in order to create the navigation

point. Otherwise we create the navigation point of the respective page also, but then call the

method navigation.render again recursively with the remaining path components (i.e. the

value of the variable followingPathItems).

In this way, the next navigation level for the active path is created (if available).

The if-query, which surrounds the ul-block, serves for intercepting an empty ul element. This

should only be created if there are actually navigation points.

Now all we have to do is commence the rendering of the navigation in the default method

initially.

To do this, insert the call of the method navigation into the default method, so

that the navigation is also rendered. Replace the content of the div element for

this purpose with the ID navigation by way of the following call: <c.literalCall

navigation" />

4.6 Outputting content

Next, we will deal with the output of the content, which consists of a rich text field in our

example. A simple way of outputting would be to assume the content of the rich text field via

xslt element copy-of . The problem here however is that no integrated pictures or links would

then work.

Therefore, fill your documents with a few contents that go beyond normal text:

Add pictures via the editor button "New picture" (in a web-compatible format

such as JPG, PNG or GIF) and and interlink documents.

Linking documents is easiest if you highlight a text in the editor and then drag

the target page from the tree view and drop it into the editor window. The

highlighted text then gets the link automatically. (It is important not to drop the

page directly on the highlighted text, but somewhere else in the editor window).

35Tutorial: Building a simple website

4 Transformations

4.6.1 Creating the »content« method

Create the literal method content for the data type node. Select content as

the data view. Add the namespace for the prefix xhtml (see code example) at

the time of creation.

<xsl:stylesheet

xmlns:xhtml="http://www.w3.org/1999/xhtml"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:onion="http://onionworks.net/2004/data"

version="1.0"

>

<xsl:output

method="xml"

omit-xml-declaration="yes"

indent="yes"

/>

<xsl:template match="/node">

<xsl:apply-templates select="text/node()" />

</xsl:template>

</xsl:stylesheet>

We will assume the above transformation as content to start with. This method would not

output anything yet. The template thus ensures that, within our rich text field with the name

text, all nodes (in this case HTML elements) are dealt with.

The HTML elements now need to be output.

To do this, extend the transformation to include further <xsl:template> elements

before the closing <xsl:stylesheet> element.

First of all, we will deal with internal links to pictures and other documents:

The first template applies for all img elements found in the text element. All

attributes (characterized by the @) that have been maintained in the rich text editor are

assumed for the img tag of the output. In this way, editors can maintain meta information

such as the alternative text on the picture. If an attribute is not to be assumed (for example

a class), then it is simply omitted. In order to create a functioning link to a binary element,

we generate, in the src attribute, a link to the binary method default which we already used

for the logo output earlier on.

36Tutorial: Building a simple website

4 Transformations

All XHTML elements generated by the rich text editor are allocated to the

namespace xhtml (" http://www.w3.org/1999/xhtml "). Therefore,

th namespace must also be matched for the templates which are to handle these

elements. This is done by placing the namespace prefix xhtml:img in front.

The template underneath takes effect in the case of any links(a elements) with a link target

(href attribute) beginning with onion:. This means we can be sure to only react to internal

links in this template.

For the link element we generate, by means of c.literalUri(), a URL that can be called in the

browser. Then all attributes of the link element of the editor are assumed, with the exception

of the href and the objectReference attribute. In addition, all further nodes within the link

element are added. These can be for example further texts or pictures.

You will find more on the core functions provided by onion.net in the extension reference.

All other elements can now be copied without special treatment for the time being.

<xsl:template match="node()">

<xsl:element name="{local-name()}">

<xsl:apply-templates select="@* | node()" />

</xsl:element>

</xsl:template>

<xsl:template match="@*">

<xsl:copy/>

</xsl:template>

<xsl:template match="text()">

<xsl:copy>

<xsl:apply-templates select="@* | node()" />

</xsl:copy>

</xsl:template>

The first of these three templates creates, for each rich text element node(), an xhtml element

of the same name (local-name()) and then assumes all attributes as well as all nodes

underneath.

The second template ensures that attributes are assumed.

If a text node is concerned, the third of the above templates takes effect. It copies the content

of the text element and reinserts all attributes and nodes under these.

If you have inserted all these templates into the content method, save and

return it. Now insert the call of the content method into the default method. For

this purpose, delete the following line from the default method:

37Tutorial: Building a simple website

4 Transformations

<p>In diesem Bereich wird der Content der Seite ausgegeben</p>

Insert the following in the place where you have just deleted the above

line: <c.literalCall method="content" />. Now return the method and open a

preview of your website documents again. Now the content maintained in the

rich text is output in addition to the other elements.

5 Closing remarks
Using this guide, you have now created a small and simple website which outputs maintainable

contents and a functioning navigation and contains a path navigation for orientation within

the website. Moreover, you have become acquainted with the fundamental approach for

working in onion.net and how some things are connected.

With this knowledge you can now gradually extend the small and simple website and improve

the rendering. This can be done in many places. Rendering the navigation for example is

relatively time-consuming.

Moreover, the literal methods you have created over the course of this tutorial offer the

possibility of setting a caching, which contributes to increasing the performance when

rendering.

In addition, you can of course do a lot of playing around with the design. A number of

extensions may still have to be made in the rendering for this. With tables for example it is

advisable to highlight every other line in order to improve legibility.

With this tutorial, you have laid the foundation for dealing with the different tasks and

possibilities of a website and for expanding on the result achieved with this tutorial so as to

meet your needs.

The onion.net team hopes you have fun learning!

P.S.: The further tutorials may now be of interest to you.

38Tutorial: Building a simple website

5 Closing remarks

