
Editors' Manual

Table of contents
1Editors' Manual..
1System requirements..1
1Login to the editor...2
2Structure of the editor..3
2Frame..3.1
3Navigation...3.2
4ChangeSet selection menu...3.2.1
5Structure area...3.2.2
6Context menu..3.2.3
6Moving and sorting of objects...3.2.4
6Object window...3.3
7The Dashboard...4
8Editing system...5
9Object structure window..5.1
9Object detail window...5.2

10Object action menu bar...5.2.1
10Object tabs..5.2.2
10Contents..5.2.2.1
11Progressive forms...5.2.2.1.1
11Rich text editor..5.2.2.1.2
11Object properties...5.2.2.2
12Versions..5.2.2.3
12Rights..5.2.2.4
13Referenced by...5.2.2.5
13XML view...5.2.2.6
13Search...5.3
14Recycle bin..5.3.1
15Preview..5.4
15Data administration...6
15User and group administration..7
15Navigation window..7.1
15User administration...7.2
16Creating a user..7.2.1
16Editing a user..7.2.2
16Access data...7.2.2.1
16Roles...7.2.2.2
17Group memberships..7.2.2.3
17User profiles..7.2.2.4
18Function for limiting the amount of users..7.2.3
18Group administration...7.3
18Creating a group...7.3.1
18Editing a group..7.3.2
18Rights..7.3.2.1
21Adding and deleting rights...7.3.2.1.1
21Inheriting rights of other groups..7.3.2.2
21Members...7.3.2.3
21Module system..8

24Module overview...8.1
26Working in a module...8.2
28Module configuration...8.3
28Administration of schemata...8.4
31Data objects..8.5
31Users / groups...8.6
32Transformations...8.7
32Object structure window..8.8
32Configuration...8.8.1
33<detailView>..8.8.1.1
34<columns>...8.8.1.1.1
34<column>..8.8.1.1.1.1
35<childType>...8.8.1.1.2
36<column>..8.8.1.1.2.1
36<symbolView>...8.8.1.2
37<childType>...8.8.1.2.1
37<label>..8.8.1.2.1.1
37<source>...8.8.1.2.1.2
38Interfaces..8.9
38Editor functions...8.10
38Binding..8.10.1
43Server-side Javascript...8.10.1.1
46Implementation of a workflow..8.10.2
47Structure of the workflow XML..8.10.2.1
48<serverActivity>...8.10.2.1.1
48<widgetActivity>..8.10.2.1.2
49<dialogActivity>...8.10.2.1.3
49<components>..8.10.2.1.3.1
49<dialogActivity>...8.10.2.1.3.1.1
50<uiActivity>..8.10.2.1.4
50<script>...8.10.2.1.4.1
51Designer..8.10.2.2
51Widget component..8.10.2.3
52Widget-Extension..8.10.2.3.1
52chooseString...8.10.2.3.1.1
52format..8.10.2.3.1.2
52formatDate..8.10.2.3.1.3
52formatDateTime..8.10.2.3.1.4
52formatTime..8.10.2.3.1.5
52settings..8.10.2.3.1.6
52Javascript prototype..8.10.2.3.2
53Configuration...8.10.2.3.3
54Components..8.11
55Selectors...8.11.1
55Extensions...8.11.2
56http://onion.net/genericforms...8.11.2.1
56chooseString...8.11.2.1.1
56format..8.11.2.1.2
56hasLabel..8.11.2.1.3
56id ...8.11.2.1.4

56label...8.11.2.1.5
56serialize...8.11.2.1.6
56settings..8.11.2.1.7
56split..8.11.2.1.8
56http://onion.net/genericforms/common..8.11.2.2
56actionUrl..8.11.2.2.1
56binaryLength...8.11.2.2.2
56binaryMimeType..8.11.2.2.3
56binaryUrl..8.11.2.2.4
56childrenSchemata...8.11.2.2.5
56configuration..8.11.2.2.6
56dataObjectIcon..8.11.2.2.7
56dataObjectPath..8.11.2.2.8
56resourceUrl..8.11.2.2.9
56schemaIcon...8.11.2.2.10
56schemaLocalization...8.11.2.2.11
56schemaLocalizationFromObject..8.11.2.2.12
56users...8.11.2.2.13
56Javascript prototype..8.11.3
57Configuration...8.11.4
58Rich text editor..9
59Tool bars..9.1
61Properties' dialogues...9.2
61Correct use of text tagging..9.3
62Headings...9.3.1
62Lists...9.3.2
62Emphasis..9.3.3
62Inserting images..9.3.4
64Links..9.3.5
65Special characters...9.3.6
68Tables..9.3.7
69Enterprise ChangeSets...10
69Change list..10.1
70Data view..10.1.1
70Communication...10.1.2
70Working with ChangeSets...10.1.3
70An example...10.1.4
71Creating and configuring...10.2
72Table Rights and Roles of a user..10.2.1
73Creating...10.2.2
74Configuring a ChangeSet..10.2.3
75Working in a ChangeSet...10.3
75Editing documents in a ChangeSet...10.3.1
75Versioning...10.3.1.1
76Editor tree view...10.3.2
76The ChangeSet overview..10.3.3
78Filtering options...10.3.3.1
79Example workflow...10.3.3.2
79Automatic display optimization..10.3.4
79Preview of changes...10.3.5

81Dialog change list..10.3.6
81Working with “statuses”...10.3.6.1
82Directly publishing / rejecting..10.3.6.2
83Publishing / rejecting ChangeSets..10.4
84Figures..

Editors' Manual

Figure 1

On the following pages, you can learn to use

the editor with the aid of the onion.net editor

manual .

It contains descriptions of the required system

in order to work with the editor as well as a

complete line through the system starting with

logging onto the editor to the point of using

the text editor.

1 System requirements
The onion.net editor can be used with the most common browsers in their current versions.
These include Windows Internet Explorer from version 8 onwards, Mozilla Firefox in the
versions currently supported, Google Chrome in its current version as well as Safari from
version 5.1. onwards

If Opera is used, faulty operation may occur during use depending on the version.

Cookies
onion.net sessions are saved with cookies. A unique session ID is stored in a cookie by the
server here in order to recognise the logged-in user again at the time of later calls; otherwise
the password would have to be re-entered for each action in the onion.net Editor. Cookies
are generally activated in the browser. If this is not the case, then this can be changed in the
settings of the browser. If you call the Editor from an intranet, it may well be that you do not
have the authorisation to change these settings. In this case you should contact your system
administration.

2 Login to the editor

Figure 2

The login page of the onion.net editor is
accessible via a URL that is defined during
the onion.net installation. Users who have to
work with onion.net will receive this URL and
their personal access data. Following entry of
the user name and password and confirmation
via the button "Login" opens the onion.net
editor.

1Editors' Manual

3 Structure of the editor

Figure 3

onion.net editor combines three independent
administrations in one single user interface:

dashboard
content administration
data administration
user and group administration
model administration
module system

The graphic elements of the onion.net editor
user interface are explained in the following
paragraphs.

3.1 Frame
The frame goes around the workspace of the Editor.The workspace tabs are arranged above
the workspace. After logging into the Editor, there is already a workspace open (the
Dashboard) and can be seen in the tab bar. This tab cannot be closed.

Figure 4

To the right of the workspace tabs there is a button with a “+”
on it for opening further tabs. By clicking on this button you
will open a menu which, depending on the authorisations,
offers ways of opening workspaces.

Simple editors are offered the point “editing system” in the
context menu. Under this menu item you can access the data
editor in order to maintain data objects. If you stay on the
above mentioned menu item with the mouse, then a submenu
will open where you can then go to the productive environment.
If ChangeSets exist, these will be listed under the point
“productive environment”. If you click on one of these menu items, a new workspace will
open in which the desired work area is opened. A new tab is also created in the tab bar.

Widgets on the Dashboard can also offer links making it possible to open workspaces or go
to documents.

If you open a work area in a new window (SHIFT + click), then a tab will also be shown in
the tab bar for this. Pop-ups are treated like normal tabs in the tab bar, only with the exception
that these are slightly transparent. As with normal tabs, the work area is brought into the
viewing area if the tab is clicked on. In the case of pop-ups, the window is placed in the
foreground.

A general rule with the tabs is that a context menu is opened when right-clicking or left-clicking
on the arrow. What functions are offered in the context menu depends on the type of work
area (e.g. editing system, user administration) and whether the tab is active or not.

If too many tabs are open, then buttons will appear to the left and right of the tabs for moving
tabs back into the viewing area that have been moved out of it.

2Editors' Manual

In order to log out, open the context menu on the tab of the Dashboard. You will now find
the function “log out” there.

3.2 Navigation

Figure 5

The navigation through data objects in the
work areas is generally divided up into the
structure tree on the left, the object structure
window above the object detail window and
the path display. The three display options
mentioned are not necessarily present in
every work area and may be omitted
depending on allocation.

The structure tree shows all objects in the
form of a tree, which the logged-in user may
work on within the respective area based on
his group rights.

A tree is a special graph, and to put it simply,
a hierarchically ordered set of objects which stem from a common root. Thus there is an
object under which all other objects are located (the so-called systemroot object). The
relationship between the objects can be pictured like that of related family members within
a family tree. There are ancestors, descendants, parents, children and siblings.

The individual branches of the object tree can be expanded and collapsed. In doing so, the
status of the individual branches is saved. If a branch expanded further is collapsed, then
the expanded part becomes available again when the branch is reopened.

When loading a work area with a structure tree for the first time, the width adapts to the
content of the structure tree. If the area should make working in the object detail window
more difficult, then the frame between these two areas can be dragged with the mouse.
Double clicking on the frame will instruct it to adapt to the width of the structure tree. If the
frame is dragged to the left and to the edge of the browser window, then the Editor will offer
to minimise this structure tree. If the structure tree is hidden, then a path display will be shown
over the object detail window or over the object structure window.This path display represents
the path to the document highlighted in the structure tree. Before the path display, the user
will be given the option of showing the structure tree again.

Figure 6

In the path display, the user can navigate
further through the data structure. When
clicking on the path elements, the user is
offered to select one of his child elements or
to remove the clicked path element.

The object structure window above the data
processing field is optional and is additionally
configured as needed. It shows objects in a
list and information can be added to it
depending on column configuration. This

3Editors' Manual

representation is an alternative to the representation of objects in the structure tree. The
objects listed in the object structure window are therefore child elements of an object in the
structure tree.

When looking at the editor for the first time you will see that, unlike with most other information
or content management systems, there are very few buttons and toolbars.The user interface
is not cluttered, but streamlined and functional. In order to make this possible, onion.net
makes intensive use of context menus as well as the dragging and dropping of objects.

3.2.1 ChangeSet selection menu
The selection menu for ChangeSets provides two functions.The main function of the selection
menu is the changing of the editing environments. Right-clicking on the element will open a
menu. In the menu, the editing environment “live environment” and all existing Enterprise
ChangeSet are listed.The context of the current tab can now be set to the editing environment
via this menu.

The second function is the jumping to the overview page of the current editing environment.
If you are in the live environment, then all checked-out documents will be indicated in the
overview. In the ChangeSets, you can go, by clicking on the selection menu, to the homepage
of a ChangeSet, where changes and meta information on the ChangeSet can be viewed.

4Editors' Manual

3.2.2 Structure area

Figure 7

The structure area shows all objects in the shape of a tree that
the logged-on user may edit in the respective area due to his
group rights.

A tree is a special graph or, simply said, a specific number of
hierarchically sorted objects coming from the same root, i. e.
there is one object to which all other objects are subordinated
(the so-called system root object). The interrelations of the
objects could be compared to family relations in a genealogical
tree. There are ancestors, descendants, parents, children and
siblings.
The individual branches of the object tree can be expanded and
collapsed. In doing so, the state of the individual branches will
be saved. If another expanded branch is collapsed, the same
expansion will be available if the branch is expanded again.
A first glance at the editor shows a major difference to most of
the other information or content management systems: there
are only a few buttons and menu bars. The interface is not
cluttered, but streamlined and functional. In order to make this
possible, onion.net makes intensive use of context menus and
the drag & drop function.

5Editors' Manual

3.2.3 Context menu

Figure 8

You will know context menus from your everyday work on the
computer. In the case of graphic user interfaces a context menu
is an interaction object that offers the selection of different
actions to the user for a certain context. In general, the context
menu is opened in the proximity of the mouse pointer as a
pop-up by clicking the second (right-hand) mouse button.

The context menu is subdivided into several sections. In general,
it comprises the sections New and Functions and often also a
section called Extras. Since onion.net is context-sensitive,
special context menus are displayed depending on the clicked
object. Due to this, not all context menu items are available for
every object.

All object types that can be created underneath an object
appear in its context menu in the section New. In order to
create a new object, you only have to call the context menu
and the select the corresponding object type.

Copy, paste, delete or rename of an object can be effected
via the context menu section Functions. This section also
comprises the call function of the research window within
the content administration (see Research Window) and the preview (see Preview).

For every object type, specific functions can be programmed that are listed in the
section Extras.

3.2.4 Moving and sorting of objects
Drag & drop is a method for moving graphic elements in a (web) application using a mouse.
An item can be dragged and then released over a possible destination.

Drag & drop is one of the most important control elements of the onion.net editor and is used
for the following two different purposes:

Organisation of structure: Changing the order and the nesting of objects in the
object tree.
Linking: Simple placing of links within the rich text editor or for reference fields.

The system gives immediate acknowledgment of a drag & drop operation in all significant
places:

Highlighting of the object
Visualisation of dragging
Displaying where the object can be dropped
Acknowledgment when dropping

3.3 Object window
If an editor has accessed an environment (productive environment or ChangeSet), the object
window will show a list of all objects checked out by the editor in the first case and an output
of all changes carried out so far in the ChangeSet in the second case.

6Editors' Manual

If an object is clicked within the structure area, the view in the object window changes. The
object can now be edited or different aspects of the object looked at. The contents and
functions of the object window differ from each other in the three modes.They will be described
in the coming sections.

The object window can also be opened on its own, either in a new window or in a new tab.
To do this, online editors must hold down the SHIFT key or the CTRL key when clicking on
the appropriate object in the structure area.

4 The Dashboard

Figure 9

This screen will welcome you after you have
successfully logged into the Editor.This view,
called “Dashboard”, provides the user with
different functionalities (“widgets”). These
widgets can show the user aggregated
information at a glance, help him to resume
work faster or provide him with functions for
editing data.

You have the possibility here of dragging new
widgets onto the Dashboard and also of
changing the background.You can still get to
all functionalities of the Editor from here.

In order to activate a widget, please click on
a free space on the Dashboard and drag the desired widget from the list open at the lower
side of the screen to the desired place. While dragging, the widget to be added sticks to the

Figure 10

cursor. At the same time, a small raster can also be seen in the upper left-hand corner of the
widget, indicating the minimum amount of
space the widget needs. When dragging over
the Dashboard raster the rasters are
highlighted which the widget would take up in
the current cursor position. If the widget does
not fit into this position, then the rasters are
not highlighted. If there is no more space on
the current page, then you can go up to the
page numbers while dragging and stay on a
non-activated page. After a short time the
page will change and you can drop the widget
there if necessary. Alternatively, you can also
add a widget by clicking on the button “add”
in the selection list. The system will try to find
an appropriate place on the current page. If this is not possible, then it will search on the
following pages, create a new page if necessary and switch to this page.

The position and page for each widget can be changed by dragging & dropping. You can
start dragging a widget by clicking on the head area of the widget.

7Editors' Manual

If you wish to remove a widget, then you need to right-click on the head area of the widget.
A context menu will appear. With the context menu item “remove”, you can delete the widget
from your Dashboard. If the widget is removed, then user-defined settings or data of this
widget will also be deleted.

Figure 11

Moreover, you can personalise your start screen, where
you can change the background image.You can see which
background images are available and can be used through
opening the context menu of the Dashboard tabs. In the
context menu there is an item “Background images”. All
possible background images are listed under this point and
can be selected.

The configuration of the background images is performed
by the administrator in the Editor configuration. Personal
background images cannot be uploaded.

5 Editing system
In order to administrate contents, the user opens the area “Editing system”. If a user clicks
on the button for adding new work areas, then he will be offered the editing system as the
first item. Under this submenu point, the user is always offered the “productive environment”
and all existing ChangeSets if necessary. If the user has the rights to create new ChangeSets,
then a new ChangeSet can be created directly with the last item “New…”.

If the user has selected an editing system, then a new tab opens. The workspace for this
area is arranged as follows. A structure tree can be seen on the left-hand side showing all
data objects which the user may view. Above the structure tree there is a selection menu
and the project logo. Using the selection menu, the user can change the work area and thus
switch between the “productive environment” or the ChangeSets. If the user is in a ChangeSet,
then the selection list is grey. If he is in the “productive environment”, the selection list is red.
The colour of the tab also changes. While it is orange in the ChangeSets, it is red in the
“productive environment”.The colour red is intended to signal to the user in a simple manner
that he is in an environment where the changes carried out will have effects on all connected
productive environments, such as a web page for example.

8Editors' Manual

Figure 12

Next to the structure tree there is an area
which can show two different views. The first
view is the entry page to the work area. This
entry page is opened if the work area is
opened, a new work area is switched to or the
selection list for changing the work area is
clicked on. Depending on the work area, this
entry page shows different information and
functions. In the ChangeSets, the changes to
the ChangeSet are shown to the user and the
user has the possibility of publishing,
discarding or configuring the ChangeSet. If
the user is in the “productive environment”,
then all documents are listed which are
currently checked out by the user.

Depending on Editor configuration, the second possible view can be divided up into object
structure window and object detail window.

5.1 Object structure window
In the structure area, objects can be displayed as part of the tree or separately in the shape
of a table in the object detail window. Via the configuration files, administrators can define
which objects are shown at which places. Fig. 6 shows an object structure window and
presents the following advantages of such a view:

If an object has a large number of child objects, e. g. a graphic directory that contains
several dozens of graphics, the tree soon becomes confusing. The display of child
objects in the object structure window improves the ergonomics of the editor.

As opposed to the tree view, the object structure window offers the option to display
additional information on objects, e. g. a minimised preview window of graphics.

The object whose descendants are currently displayed in the object structure window are
always displayed in bold.

Figure 13

The object structure window is descriped more detailed in the section editor customizing of
that manual.

5.2 Object detail window
In the object detail window, different views of the object can be seen and the object can be
edited. It basically consists of three parts: object action menu bar, object tabs and object
view or editing.

9Editors' Manual

Information displayed in the object detail window always refer to the object that is currently
activated. The activated object is highlighted by a grey background; in the structure area,
the object name is displayed and the object structure shows the complete line of the table.

Figure 14

5.2.1 Object action menu bar
With the buttons of the object action menu bar, the onion.net editor fulfils an important function
of document management: checking documents in and out to review the consistency of saved
information.

A user first has to take over an object by clicking on Check in to edit an object.
Checking in an objects blocks editing of this object by any other user and a new
object version is generated on which the user can make the desired changes.

With the button Save, the user can temporarily store his changes so that they will
not be lost if he changes to a different object or if the connection to the onion.net
editor is interrupted, for example due to a disturbance of the internet connection.

As soon as the user has finished his changes, he can complete the editing process
of this version via the button Check out. At the same time, the object becomes
available to other users who can then check it in it again.

If, however, the user decides not to check out his changes, he can check out and
return the object to the state it had before checking in by clicking on the button
Undo check out. Even temporarily saved changes are irrevocably lost by this
action. The object is then available for changes by other users.

The selected object is renamed via the button “Rename” and is the only way of
changing the name of an object other than through access via the context menu.

Figure 15

onion.net editor enables these buttons only if the function is available, i. e. the button Save
is not enabled as long as the object has been checked in by you or any other user.

5.2.2 Object tabs
The object tabs can be used to call different views of the object. Six views are available that
are described in the following paragraphs.

5.2.2.1 Contents
The object tab "Form view" serves for creating and editing the contents of an object. To do
this, the user can make us of an input mask. Structured and weakly structured contents can
be entered.

Structured contents are data that are stored in a standardised structure or that can
be made available from such a structure. Contacts within a contact administration
are structured data because they usually follow a common scheme.The first name,
surname, address consisting of street, house number, zip code and city, e-mail

10Editors' Manual

address, telephone number etc. are to be entered.The editor who creates a contact
does not have any possibility to leave this scheme because contacts are set up
like this and in no other way.

Weakly structured contents are data that are not standardised but freely combined
from a certain number of information units.

onion.net editor enables users to enter structured contents via progressive forms and weakly
structured contents via a rich text editor. It is possible to combine both input types with each
other.

5.2.2.1.1 Progressive forms
A form is a standardised means for entering data. Forms make the collection of (mass) data
easier, provide for completeness as well as data integrity and help prevent ambiguities that
may arise if there is a free choice of wording or a formless request. For this reason there is
no information system that can get around forms where entering contents into the system is
involved. However, like in the case of official forms, a user is frequently faced with a number
of fields and widgets and has to decide, without sufficient assistance, what he needs to do
and fill out in order to get to where he wants.

onion.net also uses forms for data acquisition, although in a different way to comparable
systems. The onion.net editor only displays the mandatory fields first of all, i. e. the fields
that must be filled out in order for the document to be stored. Selection fields and optional
fields must be enabled explicitly. The form therefore grows in the directions corresponding
to the contents to be entered.

This should be made clearer with an example. When entering contact information, the sex
as well as the first name and surname are given as mandatory fields. Additional optional
information can also be entered, including the position of the contact person as well as some
business contact details.

Figure 16

Which fields are mandatory and which are optional is determined in the schema that each
type of object is subject to and on the basis of which the respective progressive forms generate
themselves automatically.

5.2.2.1.2 Rich text editor
Part of the data acquisition in onion.net editor takes place via the flexible progressive forms.
A by far greater part, however, is done using the rich text editor, which is also frequently
referred to as “WYSIWYG editor”.

5.2.2.2 Object properties
The object tab "Object properties" lists seven attributes of an object. Table 1 explains these
attributes.

11Editors' Manual

https://preview.getit.de/kit/preview/page.ashx/funktionen/backend/language=de/2960/xml-schema.html

A natural number is allocated to every object
created in onion.net. For every new object,
the number is incremented by 1. Thanks to
this, every object can be unambiguously
identified in the system.

ID

Name of the onion.net user who created the
object.

Created by

Exact date on which the object was created.Created on

Every object is of a specific type defined
within the framework of the information
architecture.The name of the type is indicated
here.

Schema

Name of the onion.net user who last changed
or checked in the object.

Editor

Exact point of time of the last change of the
object.

Last change

The current version. All previous versions can
be seen via the tab Versions.

Version

Lists all ChangeSets, where the objects was
modified.

Changes in ChangeSet

5.2.2.3 Versions
The object tab "Versions" lists all previous versions of the object, in fact all versions from the
very first one that was created to the most recent (current) one are listed. Every version can
be retrieved, i. e. the current version will be replaced by the archived version, but only if the
following two conditions are fulfilled:

1. The old version passes the validity check against the current schema. If new
mandatory elements or attributes have been defined in the meantime or other
changes of the structure have been made, this old version cannot be restored.

2. The referential integrity is not violated, i. e. the archived version does not contain
any references to objects that have been deleted in the meantime.

Via the link “Compare”, online editors can examine what changes have been made to the
object in the meantime. The relevant version is always compared with the current version.
A new tab opens for this, where the version to be compared can be seen on the left-hand
side and the current version on the right.This view allows the user to compare both statuses.
There is the form view here plus the XML view. If one of the conditions specified above does
not apply to the old version, then only the XML view is available.

5.2.2.4 Rights
The object tab "Rights" lists all groups stored in the system including their rights concerning
the object. With this view it is possible to see to which groups a user must belong in order to
be able to see or edit the object or. More information on this can be found here.

12Editors' Manual

5.2.2.5 Referenced by
The object tab "Referenced by" lists all objects containing a reference to the current object.
One object is referenced by another if it is linked to it in one of its reference or free text fields
(see Chapter and Chapter 8.3.5). As long as there are entries in the reference list, the object
cannot be deleted.

5.2.2.6 XML view
All objects recorded in onion.net are available in an XML structure described by the
corresponding schema. On the tab "XML view", the XML structure of the object can be seen.
This view gives you an insight into the data quality and serves as information source for
transformation and application developers using these pieces of information.

5.3 Search

Figure 17

Online editors open the onion.net Editor
search via the context menu item “Search”.
Online editors can perform a full text search
over the entire data stock using the tab
“Search”. The editor can choose whether to
only search by name or within all object
contents. Table 2 lists the possible
restrictions.

ExplanationRestriction

At this location, the object appears whose
context menu was used for calling the
research window. The full-text search is

Subordinated

restricted to objects subordinated to this
object. If the research window is called from
the system root object, the complete database
will be searched.

Objects referencing at least one object of this
path are found.

Referenced

Only objects are searched that are direct
children of the selected element.

Exact path

The selection menu contains all object types
defined in the model administration. Abstract
types appear in grey font. If a data type is
selected, only objects of this type are
searched.

Data type

The search is restricted to objects that have
been borrowed or checked in - depending on
the selection.

Status

13Editors' Manual

The selection menu lists all users stored in
the system. If a user is selected, only objects
will be searched that have last been edited
by this user.

Last editor

The search is restricted to objects last edited
within the indicated period of time.The period
of time is to be entered in the format

Editing period

YYYY-MMM-DD or DD.MM.YYYY. If editors
do not indicate the start date, the installation
date of the system will be used; if they do not
indicate the end date, the current date will be
used.

The selection menu lists all users stored in
the system. If a user is selected, only objects
will be searched that have been created by
this user.

Creator

The search is restricted to objects created
within the indicated period of time.

Creation period

All restrictions can be combined with each other. A click on the link "Checked-in documents"
on the start page (see Chapter 3.3) thus only initiates a combined restricted search for objects
that

have the status "checked" and

that have last been edited by the user who is currently logged on.

Following a click on the button "Start search", all hits are displayed in the bottom part of the
research window. The name, path, creator and last editor of the documents are displayed.
A click on any object in the hit list opens this object in the onion.net editor.

5.3.1 Recycle bin
The recycle bin is only available in the productive environment and is called via the context
menu of the structure area.

The research window also opens with a click on the recycle bin.The difference to the search
of documents currently existing in the system is that deleting processes instead of individual
documents are searched. A deleting process may concern several documents. The search
restrictions refer to all documents concerned by the deleting process. Documents can be
restored if they match the structure and still correspond with the model. Rights of documents
in the recycle bin have expired, i. e. the user who retrieves a document will be the creator of
this document.

14Editors' Manual

5.4 Preview
For some onion.net projects, onion.net is a completely sufficient system to record and
administrate information. In most projects, however, data is to be processed in a specific
way, e. g. as HTML or PDF output. This task is performed by transformation developers via
the onion.net render engine components. They create methods for transforming data into
the desired type of output.

Transformation developers can create a preview for every object type. In this preview, data
will be processed and displayed in any specific way defined by the transformation developer.

If a preview is available for objects of a type, then a preview button will appear over the
context menu of the object. The preview opens in a new window.

6 Data administration
The data administration is available to the administrators in the Editor.This area corresponds
to that of the editing system in terms of the way it works.The difference is in its use however.
There is no convenient form available to the user for editing data objects as in the editing
system. The data objects can be edited here in their raw form as XML.

Moreover, no Editor configurations are consulted in this view for the representation of contents,
meaning that data can be seen even in the case of misconfiguration.

7 User and group administration
With the user and group administration, user administrators define groups, users and access
rights. Every user who wants to work with onion.net editor or access onion.net objects via
the available interfaces must be created as user in the onion.net editor and allocated to a
group with the respective rights.

7.1 Navigation window
Like the content administration, the workspace consists of a structure tree, an optional
object structure window and the object detail window. Only the structure area of the user and
group administration's navigation window differs slightly from the one of the content
administration.

The basic structure is predefined, i. e. it cannot be changed, and distinguishes
between user administration and group administration.
Drag & drop does not work within the structure tree; the objects are sorted
automatically.

The following paragraphs describe how user administrators work with the user and group
administration.

7.2 User administration

15Editors' Manual

Figure 18

In the user administration, all users recorded in the system are listed in alphabetical order.
If the user administrator clicks on a user, detailed information on this user will be displayed
in the object detail window.

7.2.1 Creating a user
User administrators have several options to create new users: via the context menu of the
object "Alphabetically" in the user administration or via that of the groups in the group
administration. User administrators must at least indicate a user's access data to be able to
save this user.

The object action menu bar only offers the possibility to save the user.There is no versioning
and thus there are no buttons for checking in, checking out and undoing check out. A preview
of a user is not possible either.

7.2.2 Editing a user
Any user has access data, roles, group memberships and, if and as required, also user
profiles.

7.2.2.1 Access data
Access data comprise the user name and a password that cannot be seen. It is stored in the
database in encrypted form, but it is possible to change it. This can be effected with the two
fields "New password" and "Confirm password". User administrators enter the same password
in both fields and then click on the button "Save". The password has now been updated.

7.2.2.2 Roles
Users can have different roles independent from their group memberships. Roles are "global
rights" referring to the complete system.

Editor: An editor is a user who has the right to log on to the onion.net editor. Every
created user is automatically an editor.

Administrator: Administrators have full access to the system. They have the right
to see, edit and delete all objects. This role comprises the roles editor, user
administrator and schema administrator. Administrators have the right to allocate
rights to other users.

User administrator: User administrators have full access to the user administration.
Moreover, they have an extraordinary right: User administrators (and thus also
administrators) have the right to check out objects or undo the checkout of
documents checked in by other users.

Schema administrator: Schema administrators have full access to the model
administration.

16Editors' Manual

Application server:The role application server has an exceptional position because
it is a technical role. No (natural) person should have this role; only applications
requiring read access on the content data should operate as application server.

As a matter of principle, no user has the right to change his own role or the role allocation
of users of the same rank. Example: A user with the role administrator cannot allocate to or
delete the administrator role of another user. Only the system administrator (user name
"admin") has the right to do this.

Figure 19

7.2.2.3 Group memberships
Users can be members of any number of groups. If a user is not a member of a specific
group and not an administrator, he cannot log on the onion.net editor.

User administrators add a group to user memberships by dragging & dropping, i. e. the group
is dragged from the group administration directly into the grey area and thus referenced. A
group can be deleted via the context menu (click on the group name with the right mouse
button).

Figure 20

7.2.2.4 User profiles
User profiles are optional information which is organised into profile tabs. The information
architect influences whether user profiles can be created. User profiles can also be created
underneath it which are not offered in the context menu. In this case, these profiles are mostly
generated.

If a new user is created, all its possible profiles are not available to start with. A new user
profile can be created via the context menu of a user. A user profile can be removed again
via the context menu of the profile. Profiles are edited like data objects in the editing system
- a schema is also the basis from which a progressive form is generated.

Figure 21

17Editors' Manual

7.2.3 Function for limiting the amount of users
The total amount of all users can be limited or a specific user be looked for via the context
menu of the user administration tab. To do a search, just enter the name or the ID of the
user into the input field “Name or ID”. In this field you can look both for the ID of a user and
for users beginning with the entered search word. All users fitting the search pattern will then
be automatically listed under the search field.

7.3 Group administration

Figure 22

All groups recorded in the system are listed in the group
administration. There is a distinction between Alphabetical and
Hierarchical here. Both views are equivalent! Each group can be
found in both views, but are laid out differently however. While all
groups are shown alphabetically and on one level under
Alphabetical, they can be represented in a tree structure under
Hierarchical. If a group includes the rights of another group, then
the former is shown under the other group in the hierarchical view.

If the user administrator clicks on a group, then its detailed
information is shown in the object detail window.

7.3.1 Creating a group
A group is created via the context menu. In contrast to the alphabetical view, the hierarchical
view offers the option to subordinate groups to other groups. Every group must have a unique
name.

The object action menu bar of the group administration is also restricted to the function Save,
because groups cannot be archived like users.

7.3.2 Editing a group
A group comprises rights and members.

7.3.2.1 Rights
Rights are rules of system access control deciding if and how a user or application may
perform operations with an object.

Rights can be managed for two different kinds of objects in the onion.net system. They can
either refer to data, or to ChangeSets. Rights with respect to data control whether a particular
data object, or its descendants can be read, edited, or deleted. Rights with respect to
ChangeSets control whether a particular ChangeSet can be read, edited or published.

When new users are created in the onion.net system, they only have the rights connected
to their role at first (see Chapter 6.2.2.2).The users do not have any other rights going beyond
these rights of their role. A user administrator cannot allocate more rights to a user. Instead,
the user administrator can allocate users to a group and allocate the respective rights to this
group. The rights of this group apply to all of its members. This procedure facilitates the

18Editors' Manual

administration of rights because in case of changes in the structure of rights only the rights
of a group need to be adjusted and not the ones of every individual user. Users are allocated
to one or several groups and thus receive their rights indirectly.

The allocation of rights is effected on the basis of objects. User administrators define group
rights for specific objects. In doing so, distinctions are made between object rights and
descendants' rights. Object rights refer to a specific object, descendants' rights to its
descendants. Table 3.1 lists all rights for an object that can be allocated to a group. Table
3.2 lists all rights for a ChangeSet that can be allocated to a group.

Table 3.1

DescriptionRightSymbol

Group members have the
right to see the object, i. e.
they can see it but they
cannot edit it.

Reading an object

Group members have the
right to edit the object, i. e.
they can check it in, save it
etc.

Editing an object

Group members have the
right to delete the object.

Deleting an object

Group members have the
right to create descendants of
this object.

Create descendants

Group members have the
right to see descendants of
this object.

Reading descendants

Group members have the
right to edit descendants of
this object.

Editing descendants

Group members have the
right to delete descendants of
this object.

Deleting descendants

Group members have the
right to list descendants of this
object. This is a special

Listing descendants

reading right. Group members
only have the right to see the
children of an object for which
they were explicitly given the

19Editors' Manual

right "Reading an object". All
other child objects cannot be
seen.

Table 3.2

DescriptionRightSymbol

Group members have the
right to see the ChangeSet, i.

Read ChangeSet

e. they can see it and enter it,
 but they cannot edit it.

Group members have the
right to edit the ChangeSet, i.
e. they can edit the meta-data.

Edit ChangeSet

Group members have the
right to publish or delete the
ChangeSet .

Publish ChangeSet

The object detail window gives a clear overview of the rights of a group for a specific object.
Every line shows the rights of an object with its icon and path being displayed in the first
column. For every right, the user administrator can indicate one of three states (see Table
4) by clicking in the table cell until the desired symbol appears.

Table 4

DescriptionStateSymbol

Rights are inherited in a
standardised way. If, for
example, group members

Inherit the right by structure

have been allocated the right
to read the children of an
object, this right is also
inherited to their children, i. e.
group members are allowed
to read the children's children
etc. Due to this, we speak
about descendants' rights and
not only children's rights.
Inherited rights can be
overridden if a right is
explicitly allocated to or
withdrawn from an object.

The group explicitly receives
the corresponding right.

Allocating a right

20Editors' Manual

The group does explicitly not
receive the corresponding
right.

Withdrawing a right

7.3.2.1.1 Adding and deleting rights
User administrators add a new right via the context menu with a click on the grey area in the
rights field with the right mouse button. Subsequently, they can select the path to the desired
object in the menu bar appearing at the lower bottom of the rights field. With the button "Add
path", user administrators can add another line to the table of rights and allocate rights to
this object.

User administrators can delete a right via the context menu with a click on the respective
line in the table of rights.

7.3.2.2 Inheriting rights of other groups
The field "Comprises all rights of" lists all groups who have the rights of the group that is
currently being edited. In other words, you can imagine that the table of rights of this group
contains all lines of the groups whose rights it comprises and that the table of rights is simply
extended by more lines.

Groups are referenced by dragging a group and dropping it in the field. They are deleted via
the context menu.

7.3.2.3 Members
The field Members lists all users who are members of the group. Users are added by dragging
& dropping and deleted via the context menu. If a group comprises a large number of
members, they appear on several pages.

If a user is dropped in the member field, the group also appears in the group membership
field of the user.

8 Module system
The module system bundles the tasks for system configuration and the onion.net development
in one environment.

System configuration
The system configuration can be found in the main menu (“+”) under the section
“Administration” after the module system has been activated. Using this configuration,
administrators can make general settings for the editor.

21Editors' Manual

General

Figure 36

A project logo and the project name can be
assigned in the system configuration under
the tab “General”. The logo is shown on the
login screen and in the “welcome” widget.The
project name can always be seen in the title
or tab of the browser.

Furthermore, backgrounds for the Dashboard
can be administrated in this tab.

All backgrounds are shown in the
backgrounds overview which are provided by
modules in the system or were created in the
system configuration.

Under each preview picture there is the option “default background”. With this option, the
default background can be configured for users who have not yet logged into the editor until
now. This option no longer applies for users who have already successfully logged into the
editor. After the user has logged in, the configuration of the background is stored in the profile
of the user. If the user would like to use a different available background picture, then he can
change it via the context menu of the Dashboard tab under the point “Background pictures”.

There is also the selection field “Actions” for background pictures. This field is not available
if the background picture comes from a system module. Available actions are “Edit” and
“Delete”. At this point you have the possibility of retrospectively adjusting the background
picture in the configurator. If you do not wish to activate individual background pictures for
use, you can simply delete the background picture.

Background configurator
The background configurator offers the possibility of creating or editing backgrounds for the
Dashboard. The user has the option of either uploading a picture or indicating a colour
gradient. A logo can also be uploaded, which is positioned on the lower right-hand side.
When changing pages in the Dashboard the logo moves parallax to the background picture.

The configurator is divided up into two tabs. It can be decided in the configurator whether a
picture or a process is to be maintained. Both at the same time is not possible for a background
picture.

If a background picture is to be uploaded, then this is done in the first tab. After uploading,
the picture is shown in a preview as well as the form. If you also upload a logo, then this will
be shown and positioned in the preview in proportion by way of example.
When selecting the background picture you should ensure an adequate resolution. Since
the picture is not scaled in the Dashboard, it should be selected in such a resolution that the
editors cannot see the edges of the picture.
A further option offers the possibility of aligning pictures vertically. In the case of lower screen
resolutions, this option can ensure that objects shown in the picture do not disappear from
the viewing area of the editor. For example, the object may be visible on the lower third of
the picture with a high screen resolution and then be no longer visible with lower screen
resolutions.With the vertical adjustment configuration, the picture can be aligned lower down
and the object in the picture will be in the viewing area regardless of the screen resolution.

22Editors' Manual

If no suitable background pictures are available, then a colour gradient can be configured.
An initial colour can be indicated which is to run into a second colour. Horizontal or vertical
can be indicated as the gradient alignment. No more possibilities are offered at this point
due to browser compatibilities.

Dashboard raster/widgets

Figure 37

This section deals with the configuration of
the Dashboard. The raster size of the
Dashboard can be configured once. The
raster size applies for all pages in the
Dashboard and cannot be adapted specifically
for the user. And then an initial arrangement
of widgets on the Dashboard can take place.
In doing so, widgets can be configured on the
pages of the Dashboard that are to be loaded
when a user logs into the editor for the first
time. After the login, these settings for widgets
become the settings of the user, meaning he
can position and configure the widgets as he
requires.

The view of the configuration is divided into the following parts: The overview of all installed
and activated widgets on the left, the control panels for the raster size of the Dashboard at
the top and a simplified preview of the Dashboard in the central part.

The preview of the Dashboard is intended to show a reduced-size representation of your
own window. The proportions are calculated on the basis of the selected screen resolution.

The preview works in a similar way to the live Dashboard. Widgets from the list can be
dragged and dropped into a free space in the raster, and the position and size of a widget
changed by dragging and dropping as usual. Since only an impression of a widget is shown
in the preview, a button has been placed on the upper right-hand side of a widget for deleting
it from the Dashboard.

Furthermore, the size of the raster can be configured. For this purpose, the number of lines
and columns in the control panels can be entered or set via the slider. The raster in the
preview adjusts according to the data entered. In this way, the optimal raster size can be
determined for the lowest resolution used.

23Editors' Manual

8.1 Module overview

Figure 38

The module overview allows you to cast your
eyes over all modules present in the system.
Modules can be read from an assembly, from
the file system or from the onion.net data
repository. The modules are listed in the
overview in the following order:

onion.net data repository
Assembly
File system

The module overview also offers different
functionalities. For example, you can call the
functions “install module”, “create module”
and “export modules” via the button toolbar.
Modules from the onion.net data repository can also be deactivated and deleted.

Install module

Figure 39

This functionality serves for installing new
modules, as well as for updating existing
modules. Clicking on the associated link will
open a dialogue for downloading a module
package. Once this has been successfully
downloaded, the contents of the package will
be clearly shown and you will have the
possibility of selecting the modules to be
installed, with the appropriate feature.

Create module

Figure 40

The dialogue for creating a module offers the
possibility of maintaining a name, the author,
the default language and a description. A
description is not absolutely necessary for the
creation of a module. After this has been
successfully completed, you are taken to the
module features page and can start working
in a module.

24Editors' Manual

Export modules

Figure 41

This functionality serves for exporting a
module package. A module package can
consist of one or more modules.The modules
can be secured when exporting. This means
they cannot be edited in the system they are
being imported into.

Deactivate module

Figure 42

Modules located in the onion.net data
repository can be deactivated. You will find a
control element for this purpose by the
respective module in the module overview. In
the case of a successful module deactivation,
only the localization and the object structure
windows of the module will be deactivated.

Delete module

Figure 43

Only modules can be deleted in the editor
which are located in the onion.net data
repository. Modules from the file system or an
assembly must be deleted manually in the
appropriate place. There is a control element
in the overview of the respective module for
deleting a module in the onion.net data
repository. When deleting a module, all
schemas and data objects of the module are
deleted.

25Editors' Manual

8.2 Working in a module
General structure

Figure 44

The structure of the environment for a module
corresponds to the structure of the content
management system. All objects of the
module are shown on the left-hand side of the
structure tree. The menu for selecting the
editing environment is above the structure
tree. However, switching to a ChangeSet is
only used with the transformations. All other
changes are not made in the context of the
selected ChangeSet.

The starting node is the module which
contains the meta information on the current
module. Underneath the module, different
module areas are administrated. If areas are missing, then they can be added on the module
node via the context menu.

A module is divided up into the following areas:

Module settings
Configuration
Schema administration
Data objects
Users / groups
Transformations
Object structure windows
Interfaces
Editor functions
Components

Furthermore, the settings for the web servers and the LRU slots can be administrated via
the context menu of the module node.

Web server settings
All web server settings are listed here which are configured in onion.net. The specific
transformations thus can be administrated for each web server.

LRU slots
The system-wide LRU slots are shown in the administration for the LRU slots and can be
administrated here.

The module
The meta information for a module is maintained in the starting nodes of a module. This
includes the following points:

Manufacturer, authors
Logo
Version
Features
Dashboard background pictures

26Editors' Manual

Project-specific files
Localization

Version
The structure of the version number is based on the general use of version numbers. The
meaning of the individual positions is described on Wikipedia for version numbers.

The creation of the version number can therefore be partly supported in the onion.net Editor.

The major version number is manually maintained by the editor. For this purpose there is
the point “Version” in the tab “General” of the module node. The number can be increased
or reduced there. If this number is changed, then the minor version number is reset to zero
at the same time. The major version number is of no technical significance. It should be
changed however if the module is a new implementation or includes fundamental changes.

The minor version number is changed if functional changes are made to the module.
Functional changes in a module are changes to the schema or interfaces. Since
incompatibilities with other modules can result from these changes, this number must be
changed.

The revision number is increased when changes are made to transformations. Changes to
transformations can have behavioural effects, but should not cause any incompatibilities with
other modules.

The build number is set every time the module is exported. If a module is exported, then
this number is increased by one. The module is normally exported in the “develop” mode,
meaning the module is editable when imported into other systems. If the module is exported
in the “release” mode however, the build number is set to zero. The mode is decided on at
the time of exporting. In the dialogue there is a “protect” button, with which the module is put
into “release” mode. However, the module remains on “develop” in the source system.

Features
Features are defined for a module in order to define the scope of an installation.The module
developer must select at least one feature for all elements of a module, so that the element
is also installed or updated for the selected feature.

So that the module developer does not have to select every feature, features can include
other features.This means that the elements defined for the included feature are also available
for your own feature.

Furthermore, there is the possibility, thanks to the module function “interfaces”, of defining
dependencies on other modules for a feature. This means a module can only be installed if
the dependencies are already available in the target system or are included in module package
to be installed. So that a dependency can be created, the GUID, installed minimum version
and installed feature must be indicated. The GUID is the clear identification for a module in
the module system and is shown as a tooltip when you hover over the module node with the
cursor.

Background pictures
Each module can provide its own background pictures for the Dashboard. The way the
background configurator works is described in the point module system.

27Editors' Manual

http://de.wikipedia.org/wiki/Versionsnummer

Project-specific files
Under this tab, DLLs can be integrated into the project, which provide further project-specific
functions.

Localization
In the module node itself, language-independent information is maintained. Since however
there is also language-dependent information on the module itself, this is listed in the structure
object window below the module. In this list there is already at least one language, which,
at the time of the creation of the module, was also created as a default language.

8.3 Module configuration

Figure 45

Finished modules are delivered
wr i te-protected. For making
application-specific or client-specific settings
later on there is the section “configuration”.

Here, the module developer has the possibility
of defining configurations. Forms in the editor,
workflows, widgets or even the templating in
the Render Engine can access these
configurations.

Configurations are administrated in the area
“schemas”. Module configurations can be
created below “schemas”. So the schema has
to be directly below element "Schemata" on
the root level.
The module configurations work in a similar way to user profiles. At least one instance name
must be assigned for module configurations. Furthermore the schema
"http:/onion.net/2010/editor/modulesystem/environment/container" (schema location of the
configuration container) has to be added as a structural parent schema.

All non-instantiated configurations of the module can now be created in the “configuration”
area via the context menu. If they are all already instantiated, no context menu is displayed.

8.4 Administration of schemata

Figure 46

The schemata administration is the tool of
information architects. It is used to define
object types and their content models. In
doing so, information architects define which
objects types are available and if and where
they can be created in the content
administration of the structure area.They also
define which data can contain object types
and how they are structured. In the content
administration, components of the onion.net
editor use this information to generate
progressive forms for data recording from the
content models.

28Editors' Manual

The workingspace of the schemata administration also consists of object structure window
and a object detail window.

Information architects can create objects of the type schema, user profile and module
configuration in the schema administration. New schema types are created via the context
menu; further schemas can be created below each schema. If a schema is clicked on, then
it is displayed in the object detail window.

Figure 47

User profiles and module configurations
extend the type “schema” to include instance
names. The workspace of the schema
administration consists of an object structure
window and the object detail window. The
object detail window contains, alongside
schema definition, extensive configuration
options.

Defintion
The definition of a schema is captured in
the language XML Schema. This is a
complex schema language for the
description of XML object types.
Child schemas
If it should be possible to create other object types underneath an object type in
the content administration, these object types must be linked in the field Child
schemas.
Settings
The settings are subdivided into the tabs “General” and “Localization”.
Under “General”, fundamental settings for the schema can be made. The schema
can be marked as abstract, so that no instances can be created for this schema.
Furthermore, it can be decided whether the data objects of this type can be
versioned and whether the data objects (child schemas) located underneath them
are to be sorted alphabetically. If the schema is located in the administration directly
beneath the point “Schemas”, the superordinate schema that is not located in the
module will also be configured.

Figure 48

In the tab “localization”, the display
name and icons for the schema can
be assigned. If the display name is
configured, then this will be
displayed in the editor as a matter
of priority, before the system name
of the schema. The same goes for
the icons. These are displayed in
the structure tree or in the tabs for
example.
Child schemas
If it is to be possible to create other
object types below an object type in
the content administration, then
these must be linked in the tab “Child schemas”. Further schema can be added by
dragging and dropping or via the schema selection that can be reached by a

29Editors' Manual

right-click of the mouse. Schemas are deleted via the context menu of the respective
schema.
Structure references

Figure 49

The structure references list is the
counterpart to the list in the tab
“Child schemas”. All schemas are
listed with instances under which
further instances of the current
schema may be created. As in the
tab “Child schemas”, further schema
can be added or existing schema
deleted.
Interface implementation
In this tab, the interfaces are
administrated which this schema is
to implement. For this purpose,
interfaces can either be added to
the list by dragging and dropping or by right-clicking. Interfaces are deleted on the
respective interface via the context menu.

Further objects can be created in the object structure window.

Component binding
Based on the schema definition, the form is generated in the content management
system.The default components in the form can be replaced with own components
using the component binding.
Localization
The form components are configured via the localization objects. This means that
both language-independent settings, such as the width of a selection menu, and
language-dependent settings, such as the naming of a label, can be made in these
objects.
Update script

Figure 50

The use of update scripts is
necessary if the module is already
in use on other systems and the
current schema has changed
meaning that any data there may
be must be revised. If the module is
to now be updated on the other
systems, then the script “upgrade”
is executed. If the update of the
module fails at a later time, then the
script “downgrade” must be
executed in order to restore the
previous data status.

Name conventions
A schema is identified via its address. This must be unique across the system. It has proven
successful to name schemas in the URI format.

A schema is renamed via the button “Rename” in the toolbar of the object detail window or
the context menu of the schema.

30Editors' Manual

8.5 Data objects

Figure 51

In the document “data objects”, data objects
from the content management system can be
referenced which are to be exported with the
module.This means that required data objects
or example data for instance can also be
exported with the module.

In order to reference a data object from the
content management system, it can simply
be referenced by dragging and dropping or
be selected via the path selection.

Furthermore, it can be configured for each
reference whether only this data object is to
be exported recursively or the data objects
underneath also.

8.6 Users / groups

Figure 52

In the section “users / groups”, users, groups
and user profiles can be configured for the
module which are to be installed or updated
when importing the module.

Users
In the “Users” tab, existing users can be selected that are intended to be part of the module.
In addition, the password must be assigned so that this user can also be created in the
system to be installed. The roles defined in the user are applied too, meaning the user is
also given these roles in the target system. It is to be ensured here however that the user
who installs the module has the necessary rights for this user to be given these roles.

Groups
In the “Groups” tab, groups are added that are intended to be part of the module. If group
includes, members or data objects are present in the target system, these are added to the
group.

User profiles
For users, user profiles can also be provided along with the module.

31Editors' Manual

For this purpose, a data object is referenced which is to be used as a user profile. Accordingly,
the instance name and the schema name of the data object have to be indicated. So that
this profile can be assigned to users as well, user or group bindings can be indicated. Users
indicated at the time of user binding are given this profile. In the case of group bindings, all
users that are members of this group are given this user profile.

8.7 Transformations
The transformations for the module are created here. These are only valid for the module
and cannot be executed by any other module. Everything concerning the module is created
here (e.g. the aggregation for the structure abstraction).

It is to be ensured that the transformations are integrated in the respective servers, “Preview”
and “Live”. This currently takes place via the context item “Configure” on a transformation
container.

8.8 Object structure window
Objects can be displayed in the structure area as part of the tree or separately in the object
detail window. The object detail window makes it possible to show objects with additional
information. It is possible to configure a list view or symbol view for this. The following two
advantages can be singled out:

If an object has a particularly high number of child objects, such as a graphic folder
containing several dozen graphics, the tree soon becomes cluttered. Displaying
the child objects in the object structure window increases the ergonomics of the
Editor.

Unlike in the tree, additional information about objects can be displayed in the
object structure window, such as a reduced-size preview picture for graphics.

The list view and symbol view differ in their representation. The list view is, as the name
suggests, a list with additional information on an object.This information may be for example
the name, data from the content or meta information. The symbol view on the other hand
concentrates on the representation of pictures. Miniature pictures from the content of the
individual data objects are displayed here. This means picture collections can be quickly
scanned without having to open the individual objects. Of course, the usual functionalities
like a sorting & dragging and dropping are available.

Configuration
Object structure windows for different schemas of the module are maintained in a central
configuration. This configuration can be created on the module root node in the tree view
using the context menu. The node “object structure window” will then be in the tree view.

The configuration of the object structure windows is performed using XML. You will find a
detailed description on the configuration here.

8.8.1 Configuration
The configuration of the object structure windows can be performed using XML. The root
element “childrenViews” has the following child elements and attributes for this.

32Editors' Manual

NumberNamespaceDescriptionElement

0..*http://onion.net/modulesystemConfiguration section
for a list view

detailView

0..*http://onion.net/modulesystemConfiguration section
for a symbol view

symbolView

OptionalNamespaceDescriptionAttribute

No http://onion.net/common/i18nDefault language of
the object structure
window

language

8.8.1.1 <detailView>

NumberNamespaceDescriptionElement

1http://onion.net/modulesystemParent element for
defining the
displayable columns

columns

1..*http://onion.net/modulesystemConfiguration section
for a child element

childType

OptionalNamespaceDescriptionAttribute

NoList, separated by
blanks, of the

schemaLocations

SchemaLocations to
which the list view is
to be applied

YesBoolean value for the
inheritance of the list

applyToDerivations

view by the
derivations of defined
schemas

YesList, separated by
blanks, of the value

order

pairs column
Id#sorting direction.
For example:
“title#ascending
creator#descending"

33Editors' Manual

8.8.1.1.1 <columns>

NumberNamespaceDescriptionElement

1..*http://onion.net/modulesystemDefinition of the
displayable columns

column

8.8.1.1.1.1 <column>

OptionalNamespaceDescriptionAttribute

Yes http://onion.net/common/i18nUnique key for
localizing the view

key

NoLabel of the columnlabel

NoId of the columnid

YesWidth of the column.
Possible values are

width

%-indications, ‘px’-
indications or the
value ‘auto’.The value
‘auto’ is the default
value.

YesMinimal width of the
column. Possible

minWidth

values are
%-indications,
‘px’-indications or the
value ‘auto’.The value
‘auto’ is the default
value.

Yes Alignment of the
content. Possible
values are:

align

left
center
right

YesData type of the
content. Possible
values are:

type

text
number
image
boolean
dateTime

34Editors' Manual

YesFormat for the type
dateTime. Possible

format

pattern can be found
on the page
http://www.geekzilla.co.uk/View00FF7904-B510-468C-A2C8-F859AA20581F.htm.

YesControls the visibility
of the column.
Possible values are:

visibility

fixed
(always
visible)
visible
(visible / the
column can
be
deselected
however)
hidden (not
visible / the
column can
be selected
however)

8.8.1.1.2 <childType>

NumberNamespaceDescriptionElement

1..*http://onion.net/modulesystemDefinition of the
column contents

column

OptionalNamespaceDescriptionAttribute

NoList, separated by
blanks, of the

schemaLocations

SchemaLocations to
which the list view is
to be applied

YesBoolean value for the
inheritance of the list

applyToDerivations

view by the
derivations of defined
schemas

35Editors' Manual

http://www.geekzilla.co.uk/View00FF7904-B510-468C-A2C8-F859AA20581F.htm

YesBoolean value which
controls the display in
the tree view

structureInvisible

8.8.1.1.2.1 <column>
In the content, the content to be displayed of the column selected with the attribute “ref” is
defined. All elements from the namespace “http://www.w3.org/1999/XSL/Transform” can be
used for this. Moreover, the data view “progressive” of the object and the core functions of
the Renderengine are available.

OptionalNamespaceDescriptionAttribute

NoReference to the Id of
the appropriate
column

ref

8.8.1.2 <symbolView>

NumberNamespaceDescriptionElement

1..*http://onion.net/modulesystemConfiguration section
for a child element

childType

OptionalNamespaceDescriptionAttribute

NoList, separated by
blanks, of the

schemaLocations

SchemaLocations to
which the list view is
to be applied.

YesBoolean value for the
inheritance of the list

applyToDerivations

view by the
derivations of defined
schemas.

YesThe maximum width
of the displayed

maxWidth

picture. The default
value is 100.

YesThe maximum height
of the displayed

maxHeight

picture. If the value is
not defined, then the

36Editors' Manual

current value of the
maximum width is
taken.

8.8.1.2.1 <childType>

NumberNamespaceDescriptionElement

1http://onion.net/modulesystemLabel of the picturelabel

1http://onion.net/modulesystemPicture sourcesource

OptionalNamespaceDescriptionAttribute

NoList, separated by
blanks, of the

schemaLocations

SchemaLocations to
which the list view is
to be applied

YesBoolean value for the
inheritance of the list

applyToDerivations

view by the
derivations of defined
schemas

YesBoolean value, which
controls the display in
the tree view

structureInvisible

8.8.1.2.1.1 <label>
The picture label to be displayed is defined in the content. All elements from the namespace
“http://www.w3.org/1999/XSL/Transform” can be used for this purpose. Moreover, the data
view “progressive” of the object and the core functions of the Renderengine are available.

8.8.1.2.1.2 <source>

OptionalNamespaceDescriptionAttribute

NoReference identifier of
the object

referenceIdentifier

NoXPath to the binary
reference of the
picture

xpath

37Editors' Manual

8.9 Interfaces
Interfaces serve, in the module system, for the type-safe definition of object references in
the XML schema and for the definition of the type methods to be implemented. For example,
a module can be built for a basic web page and make it possible, with an interface, to display
user-defined content. Developers could now display their own contents by binding themselves
to the interface and implementing the necessary methods.

Create
For interface definition, the creation of a container is necessary.The creation can be performed
on the module data object using the context menu. It is then possible to create interfaces
using the context menu and deleted them again if necessary.

Configuration
An interface is uniquely identified by its name and is also used with its name within a schema.
The configuration of one or more features is necessary however for the module export or
import. The definition of methods is purely for information purposes. It should always be
performed however. Interface implementations should be carried out according to this
definition.

Use
In order to use an interface within a schema, the interface can be dragged and dropped into
the type definition of an element or attribute. Interface implementations are performed in the
respective schema.You will find further information here.

8.10 Editor functions
Editor functions offer the options of equipping the editor with additional functionalities.
Workflows and widgets are available for this, whereby a widget is merely an extended
workflow. As a general rule, the implementation and integration of editor functions are
distinguished between. The implementation is performed in data objects underneath the
container data object. The integration of workflows or widgets is performed in the container
data object. In addition to the connection of editor functions, the container data object offers
the possibility of integrating additional APIs or script data objects for user-defined displaying.

8.10.1 Binding
Binding workflows and connecting widgets are different. Workflows can be used at a great
number of positions in the editor. Widgets however can only be used on the Dashboard. To
bind a widget, it is sufficient to reference the widget data object in the tab “Widget” of the
editor function data object and set a GUID for the widget. Workflows however need to be
bound to a pre-defined position e.g. the context menu. The binding targets described in the
two following tables are available for this.The first table lists binding targets that can be used
for extending the editor. The second table lists binding targets for system functions, which
can be overwritten however.

The display of bound workflows can be filtered further. If a workflow is bound to the data
object in the ContentManagement for example, it may be wished to display the item in the
case of data objects with a certain schema. For this purpose, there is the possibility of binding
a server-side Javascript and defining a function there which performs the filtering.The function
must then be called in the configuration point “On” (e.g. “return isRoot();”).The global variable
“context” is available for assistance and is described in more detail here.

38Editors' Manual

Binding tables

Binding

changeset.overview.buttontoolbar.left

changeset.overview.buttontoolbar.right

contentmanagement.dataobjects.buttontoolbar.left

contentmanagement.dataobjects.new.buttontoolbar.left

contentmanagement.dataobjects.buttontoolbar.right

contentmanagement.dataobjects.new.buttontoolbar.right

contentmanagement.dataobjects.contextmenu.*

contentmanagement.dataobjects.contextmenu.detailview

contentmanagement.dataobjects.contextmenu.treeview

contentmanagement.index.buttontoolbar.left

contentmanagement.index.buttontoolbar.right

dashboard.paginator

datamanagement.dataobjects.buttontoolbar.left

datamanagement.dataobjects.buttontoolbar.right

datamanagement.dataobjects.contextmenu

datamanagement.index.buttontoolbar.left

datamanagement.index.buttontoolbar.right

schemamanagement.schema.buttontoolbar.left

schemamanagement.schema.buttontoolbar.right

schemamanagement.schema.contextmenu

workspacemanager.add

usermanagement.root.buttontoolbar.left

usermanagement.root.buttontoolbar.right

usermanagement.root.contextmenu

usermanagement.container.users.contextmenu

usermanagement.container.groups.contextmenu

usermanagement.container.groups.alphabetic.contextmenu

usermanagement.container.groups.hierarchic.contextmenu

usermanagement.user.buttontoolbar.left

usermanagement.user.buttontoolbar.right

usermanagement.user.contextmenu

usermanagement.usersetting.buttontoolbar.left

usermanagement.usersetting.buttontoolbar.right

usermanagement.usersetting.contextmenu

usermanagement.group.buttontoolbar.left

usermanagement.group.buttontoolbar.right

usermanagement.group.contextmenu

39Editors' Manual

System binding

changeset.changes

changeset.commit

changeset.configure

changeset.create

changeset.discard

changeset.overview.changeapprovalstate

contentmanagement.dataobjects.checkin

contentmanagement.dataobjects.forcecheckin

contentmanagement.dataobjects.checkout

contentmanagement.dataobjects.compareversion

contentmanagement.dataobjects.copy

contentmanagement.dataobjects.create

contentmanagement.dataobjects.delete

contentmanagement.dataobjects.destroyversion

contentmanagement.dataobjects.move

contentmanagement.dataobjects.order

contentmanagement.dataobjects.paste

contentmanagement.dataobjects.rename

contentmanagement.dataobjects.renametemp

contentmanagement.dataobjects.restoreversion

contentmanagement.dataobjects.save

contentmanagement.dataobjects.spellcheck

contentmanagement.dataobjects.undocheckout

contentmanagement.dataobjects.preview

contentmanagement.spellchecker.execute

contentmanagement.spellchecker.apply

contentmanagement.spellchecker.abort

contentmanagement.spellchecker.dictionary

contentmanagement.search

contentmanagement.trash

contentmanagement.navigatetoschema

contentmanagement.navigatetodatamanagement

contentmanagement.workspace

dashboard.widgets

dashboard.workspace

40Editors' Manual

datamanagement.dataobjects.checkin

datamanagement.dataobjects.forcecheckin

datamanagement.dataobjects.checkout

datamanagement.dataobjects.compareversion

datamanagement.dataobjects.copy

datamanagement.dataobjects.create

datamanagement.dataobjects.delete

datamanagement.dataobjects.destroyversion

datamanagement.dataobjects.move

datamanagement.dataobjects.order

datamanagement.dataobjects.paste

datamanagement.dataobjects.rename

datamanagement.dataobjects.renametemp

datamanagement.dataobjects.restoreversion

datamanagement.dataobjects.save

datamanagement.dataobjects.undocheckout

datamanagement.dataobjects.preview

datamanagement.search

datamanagement.trash

datamanagement.navigatetoschema

datamanagement.workspace

schemamanagement.schema.create

schemamanagement.schema.delete

schemamanagement.schema.rename

schemamanagement.schema.addtochangeset

schemamanagement.schema.save

schemamanagement.workspace

workspacemanager.activate.modulesystem

usermanagement.user.create

usermanagement.user.rename

usermanagement.user.delete

usermanagement.user.save

usermanagement.usersetting.create

usermanagement.usersetting.delete

usermanagement.usersetting.save

usermanagement.usersetting.navigatetoschema

usermanagement.group.create

usermanagement.group.rename

41Editors' Manual

usermanagement.group.configure

usermanagement.group.delete

usermanagement.group.save

usermanagement.workspace

modulesystem.overview.install

modulesystem.overview.create

modulesystem.configuration.save

modulesystem.module.localization.add

modulesystem.localization.add

modulesystem.localization.fill

modulesystem.localization.delete

modulesystem.localization.rename

modulesystem.interface.implement

modulesystem.environment.create

modulesystem.module.navigateto

modulesystem.module.save

modulesystem.module.setstate

modulesystem.module.uninstall

modulesystem.schema.save

modulesystem.schema.rename

modulesystem.schema.move

modulesystem.schema.newschema

modulesystem.schema.newsetup

modulesystem.schema.newcustomizing

modulesystem.schema.add.existing

modulesystem.schema.delete

modulesystem.schema.addtoschangeset

modulesystem.schema.updatescript.new

modulesystem.schema.updatescript.rename

modulesystem.search

modulesystem.workflow.create

modulesystem.workflow.designer.create.comment

modulesystem.workflow.designer.create.serverscript

modulesystem.workflow.designer.create.clientscript

modulesystem.workflow.designer.create.component

modulesystem.workflow.designer.create.widgetcomponent

modulesystem.workflow.designer.navigate

modulesystem.workflow.designer.modify.serverscript

42Editors' Manual

modulesystem.workflow.designer.modify.clientscript

modulesystem.workflow.designer.modify.component

modulesystem.workflow.designer.modify.widgetcomponent

modulesystem.workflow.designer.line.connect

modulesystem.workflow.designer.line.modify

modulesystem.workflow.designer.save

modulesystem.export

modulesystem.webserversettings.add.transformation

modulesystem.webserversettings.configure

modulesystem.lruslots.configure

8.10.1.1 Server-side Javascript
In order to filter the display of a workflow, the global variable “context” is available for the
Javascript function. The variable “context” supplies the methods described in the following
table.

DescriptionReturn valueFunction

Returns the target of the
current workflow.

objectgetTarget()

Returns a bound API.objectgetApi(string name)

Returns the given arguments.objectgetArgument(string key)

Writes a log entry.voidlog(string message)

Writes a log entry.voidlog(string message, string
category)

Returns the onion session.JOnionSessiongetSession()

Targets and Arguments

getArgument(name)getTarget()Name

nullDataObject.ReferenceIdentifierchangeset.changes

ChangeSet.Idchangeset.commit

nullchangeset.configure

ChangeSet.Idchangeset.create

ChangeSet.Idchangeset.discard

ChangeSet.Idchangeset.overview.buttontoolbar.left

ChangeSet.Idchangeset.overview.buttontoolbar.right

changeset.overview.changeapprovalstate

43Editors' Manual

DataObject.ReferenceIdentifiercontentmanagement.dataobjects.buttontoolbar.left

DataObject.ReferenceIdentifiercontentmanagement.dataobjects.buttontoolbar.right

DataObject.ReferenceIdentifier
|| null

contentmanagement.dataobjects.checkin

DataObject.ReferenceIdentifiercontentmanagement.dataobjects.forcecheckin

DataObject.ReferenceIdentifiercontentmanagement.dataobjects.checkout

contentmanagement.dataobjects.compareversion

DataObject.ReferenceIdentifiercontentmanagement.dataobjects.contextmenu.*

DataObject.ReferenceIdentifiercontentmanagement.dataobjects.contextmenu.detailview

DataObject.ReferenceIdentifiercontentmanagement.dataobjects.contextmenu.treeview

DataObject.ReferenceIdentifiercontentmanagement.dataobjects.copy

schema: Schema.IdDataObject.ReferenceIdentifiercontentmanagement.dataobjects.create

DataObject.ReferenceIdentifiercontentmanagement.dataobjects.delete

version: versionDataObject.ReferenceIdentifiercontentmanagement.dataobjects.destroyversion

target:
DataObject.ReferenceIdentifier

DataObject.ReferenceIdentifiercontentmanagement.dataobjects.move

target:
DataObject.ReferenceIdentifier,

DataObject.ReferenceIdentifiercontentmanagement.dataobjects.order

positioningMode: Before ||
After

DataObject.ReferenceIdentifiercontentmanagement.dataobjects.paste

DataObject.ReferenceIdentifiercontentmanagement.dataobjects.rename

nullcontentmanagement.dataobjects.renametemp

version: versionDataObject.ReferenceIdentifiercontentmanagement.dataobjects.restoreversion

DataObject.ReferenceIdentifier
|| null

contentmanagement.dataobjects.save

DataObject.ReferenceIdentifiercontentmanagement.dataobjects.undocheckout

nullcontentmanagement.search

nullcontentmanagement.trash

nullcontentmanagement.workspace

nulldashboard.paginator

nulldashboard.widgets

nulldashboard.workspace

DataObject.ReferenceIdentifierdatamanagement.dataobjects.buttontoolbar.left

DataObject.ReferenceIdentifierdatamanagement.dataobjects.buttontoolbar.right

DataObject.ReferenceIdentifier
|| null

datamanagement.dataobjects.checkin

DataObject.ReferenceIdentifierdatamanagement.dataobjects.forcecheckin

DataObject.ReferenceIdentifierdatamanagement.dataobjects.checkout

nulldatamanagement.dataobjects.compareversion

44Editors' Manual

DataObject.ReferenceIdentifierdatamanagement.dataobjects.contextmenu

DataObject.ReferenceIdentifierdatamanagement.dataobjects.copy

schema: Schema.IdDataObject.ReferenceIdentifierdatamanagement.dataobjects.create

DataObject.ReferenceIdentifierdatamanagement.dataobjects.delete

version: versionDataObject.ReferenceIdentifierdatamanagement.dataobjects.destroyversion

target:
DataObject.ReferenceIdentifier

DataObject.ReferenceIdentifierdatamanagement.dataobjects.move

target:
DataObject.ReferenceIdentifier,

DataObject.ReferenceIdentifierdatamanagement.dataobjects.order

positioningMode: Before ||
After

DataObject.ReferenceIdentifierdatamanagement.dataobjects.paste

DataObject.ReferenceIdentifierdatamanagement.dataobjects.rename

nulldatamanagement.dataobjects.renametemp

nulldatamanagement.dataobjects.restoreversion

DataObject.ReferenceIdentifier
|| null

datamanagement.dataobjects.save

DataObject.ReferenceIdentifierdatamanagement.dataobjects.undocheckout

nulldatamanagement.search

nulldatamanagement.trash

nulldatamanagement.workspace

Schema.Idschemamanagement.schema.buttontoolbar.left

Schema.Idschemamanagement.schema.buttontoolbar.right

Schema.Idschemamanagement.schema.contextmenu

Schema.Idschemamanagement.schema.create

Schema.Idschemamanagement.schema.delete

Schema.Idschemamanagement.schema.rename

Schema.Idschemamanagement.schema.save

nullschemamanagement.workspace

nullworkspacemanager.add

Group.Id || nullusermanagement.user.create

User.Idusermanagement.user.save

User.Idusermanagement.user.rename

User.Idusermanagement.user.delete

User.Idusermanagement.usersetting.create

DataObject.ReferenceIdentifierusermanagement.usersetting.delete

Group.Id || nullusermanagement.group.create

Group.Idusermanagement.group.rename

Group.Idusermanagement.group.configure

45Editors' Manual

Group.Idusermanagement.group.delete

Group.Idusermanagement.group.save

8.10.2 Implementation of a workflow
The only difference in the implementation of a widget is one additional activity and additional
meta information from a workflow.

Create
For creating a workflow and a widget, assistants are available which create a functional
workflow or a functional widget. The assistants offer the possibility of creating a workflow or
widget by merely setting the name. However, they also offer the possibility of configuring
extended settings and of thus setting the meta data of the workflow.

Meta information
Meta information can be maintained directly in the XML of the workflow or widget, as well as
in the node “Meta information” below the workflow or widget. Localizations are displayed in
the object structure window and localizable settings can be made there.

Activities
Activities can be edited using the Designer or directly in the XML of the workflow. Editing the
workflow using the Designer has a number of advantages. For example, if a server activity
is created, then the appropriate function for this is automatically defined in the script. The
structure of the XML data object can be seen here.

Server activity
A server activity serves for the execution of server-side functionalities. The Jint engine is
available for this. When creating a server activity using the Designer, an associated function
is defined automatically. If the Designer is not used, then the function must be created in one
of the existing server-side Javascript data objects. The function name must be identical to
the Id of the activity. Server-side Javascript data objects can be created underneath the
“resources” data object.

Dialogue activity
A dialogue activity serves for the output of information and for interaction with a user in the
form of a dialogue.When creating a dialogue activity using the Designer, several automatisms
are performed. First, the model is created if there is not one already. A model is necessary
for the execution of a dialogue activity. Components for displaying the dialogue are bound
to this model. Then, bindings to the model are performed and a component associated with
the dialogue is created. The default dialogue component is bound to the document and the
newly created component is bound to the root element. If the root element is renamed or if
additional components are to be bound, then the XML of the dialogue activity must be changed
manually. The structure the XML node is described here.

46Editors' Manual

http://jint.codeplex.com/

Widget activity
A widget activity serves for the output of information and for interaction with a user in the
form of a widget. When creating a widget activity using the Designer, the necessary widget
component is automatically created and bound. The structure of a widget component is
slightly different from the structure of the Genericform component and is described in more
detail here.

Client activity
A client activity serves for the execution of client-side functionalities. When creating using
the Designer, the XML element for the client activity is created. The structure of the XML
node is described here.

8.10.2.1 Structure of the workflow XML
The elements underneath the “workflow” root node can occur in any order and number.

NumberNamespaceDescriptionElement

0..*http://onion.net/modulesystem/workflowConfiguration section
for an activity for

serverActivity

calling a server-side
Javascript
functionality

0..*http://onion.net/modulesystem/workflowConfiguration section
for an activity for
displaying a widget

widgetActivity

0..*http://onion.net/modulesystem/workflowConfiguration section
for an activity for
displaying a dialogue

dialogActivity

0..*http://onion.net/modulesystem/workflowConfiguration section
for an activity for

uiActivity

calling a Javascript
functionality

OptionalOnly for one widgetDescriptionAttribute

YesYesDefault height of a
widget

defaultHeight

YesYesDefault width of a
widget

defaultWidth

YesYesMaximum height of a
widget

maxHeight

YesYesMaximum height of a
widget

maxWidth

47Editors' Manual

YesYesMinimum height of a
widget

minHeight

YesYesMinimum height of a
widget

minWidth

YesNoIcon in the size 20x20icon-20

YesNoIcon in the size 32x32icon-32

Yes YesAppearance of a
widget

skin

No NoStarting activitystart

8.10.2.1.1 <serverActivity>

OptionalNamespaceDescriptionAttribute

NoId and function name
of the activity

id

Yeshttp://onion.net/workflow/activityresultNext activity, if the
current activity has

result:success

been successfully
executed

Yeshttp://onion.net/workflow/activityresultNext activity, if the
current activity has not

result:error

been successfully
executed

Yeshttp://onion.net/workflow/activityresultAny attribute, which
points to an activity

result:*

that can be called
after the current
activity

8.10.2.1.2 <widgetActivity>

OptionalNamespaceDescriptionAttribute

NoId of the activityid

NoXLink to the widget
component

definition

Yeshttp://onion.net/workflow/activityresultNext activity, if the
current activity has

result:success

been successfully
executed

Yeshttp://onion.net/workflow/activityresultNext activity, if the
current activity has not

result:error

48Editors' Manual

been successfully
executed

Yeshttp://onion.net/workflow/activityresultAny attribute, which
points to an activity

result:*

that can be called
after the current
activity

8.10.2.1.3 <dialogActivity>

NumberNamespaceDescriptionElement

1http://onion.net/modulesystem/workflowContains bindings for
components

components

OptionalNamespaceDescriptionAttribute

NoId of the activityid

Yeshttp://onion.net/workflow/activityresultNext activity, if the
current activity has

result:success

been successfully
executed

Yeshttp://onion.net/workflow/activityresultNext activity, if the
current activity has not

result:error

been successfully
executed

Yeshttp://onion.net/workflow/activityresultAny attribute which
points to an activity

result:*

that can be called
after the current
activity

8.10.2.1.3.1 <components>

NumberNamespaceDescriptionElement

1..*http://onion.net/modulesystem/workflowBinding for a
component

component

8.10.2.1.3.1.1 <dialogActivity>

49Editors' Manual

OptionalNamespaceDescriptionAttribut

NoSelection of the
binding target in the

match

schema for the
component (see here)

NoPath or Xlink to a
component

definition

8.10.2.1.4 <uiActivity>

NumberNamespaceDescriptionElement

1http://onion.net/modulesystem/workflowContains the
Javascript

script

OptionalNamespaceDescriptionAttribute

NoId of the activityid

Yeshttp://onion.net/workflow/activityresultNext activity, if the
current activity has

result:success

been successfully
executed

Yeshttp://onion.net/workflow/activityresultNext activity, if the
current activity has not

result:error

been successfully
executed

Yeshttp://onion.net/workflow/activityresultAny attribute which
points to an activity

result:*

that can be called
after the current
activity

8.10.2.1.4.1 <script>
In this element, the Javascript is defined for calling. For assistance, the variable “context”
can be used with the following functions.

DescriptionFunction

Changes the activity next calledfinishActivity(value)

Supplies the modelgetModel()

50Editors' Manual

Supplies the HtmlWindow by which the
workflow was executed

getSourceWindow()

Supplies the HtmlNodegetSourceElement()

Updates the edited modelupdateModel(newModel)

8.10.2.2 Designer
Using the Designer you can arrange the activities in a clear fashion and functionally
interconnect them.The Designer offers certain automatisms which are performed automatically
when creating an activity or when connecting activities. You can arrange all activities and
connections by dragging and dropping.

Creating an activity
An overview of all instantiable activities can be found in the left-hand area of the Designer.
These activities can be dragged and dropped onto the workspace and will thus be created
after the name has been successfully entered.

Deleting an activity
In order to delete an activity, it must first be marked. To mark just click on the appropriate
activity. If an activity is marked, then you will be able to see an “x” for deletion in the upper
right-hand area of the activity. After clicking on this control element the activity will be deleted.

Editing an activity
Right-clicking on an activity opens a context menu with the available functions for an activity.
The point “Edit” enables the activity to be edited.

Creating a connection
In order to create a connection, the sender activity may be not marked. When the cursor is
moved over an activity, control elements for the creation of a connection are displayed in the
centres of the pages. Dragging from these control points will create a temporary connection.
If the temporary connection is dropped on an activity, a dialogue will appear for entering the
connection name. After the input, the connection will be permanently created.

Deleting a connection
To delete a connection, this must first be marked. To mark, just click on the connection. After
clicking, the connection will be shown with a frame and a control element with an “x” will be
added for connection. Clicking on this control element will delete the connection.

Configuring of a connection
Right-clicking on a label of a connection will open a context menu with available functions
for a connection. The point “Edit” enables the connection to be edited.

8.10.2.3 Widget component
As opposed to a Genericform component, a widget component is not bound to a node of the
model. The widget component is automatically bound to the entire model. The structure of
the widget component differs only slightly from the Genericform component.The maintenance
is divided into four areas:

51Editors' Manual

General
This tab only contains the GUID of the widget component.

Server component
In this section, the output of the component can be arranged using HTML and XSLT. In
addition, the extensions described here are available.

Client component
This section makes the integration of CSS and Javascript possible. There is the possibility
of binding a Javascript instance to an HTML element. The definition of a prototype and the
binding to the HTML element in the server component is necessary for this. The prototype
string consists of the class name of the Javascript class and the text section “.prototype”
(e.g. dateTimePicker.prototype). The binding in the server component is ensured by the
attribute “data-component”. The GUID of the component must be set as the content of the
attribute.You will find a more detailed description of the Javascript prototype here.

Configuration
This section serves for the definition of user-defined configuration values. These can serve
for example for transferring a localized text value. The definition is performed using XML.
You will find a more detailed description of the XML structure here. Configurations can be
created underneath the widget component data object.

8.10.2.3.1 Widget-Extension
8.10.2.3.1.1 chooseString
8.10.2.3.1.2 format
8.10.2.3.1.3 formatDate
8.10.2.3.1.4 formatDateTime
8.10.2.3.1.5 formatTime
8.10.2.3.1.6 settings
8.10.2.3.2 Javascript prototype
Several features and methods are available to the Javascript instance.

DescriptionProperty

Context of the widgetcontext

Javascript node on which the component is
bound. See also
http://de.selfhtml.org/javascript/objekte/node.htm

htmlNode

Object with the transferred properties.settings

DescriptionFunction

If this function is defined, it is called when
loading the widget.

init()

52Editors' Manual

http://de.selfhtml.org/javascript/objekte/node.htm

If this function is defined, it is called when
changing the size of the widget.

resize(width, height)

The feature “context” contains the following functions:

DescriptionFunction

Changes the activity next calledfinishActivity(value)

Supplies the modelgetModel()

Supplies the HtmlWindow by which the
workflow was executed

getSourceWindow()

Supplies the HtmlNodegetSourceElement()

Updates the edited modelupdateModel(newModel)

8.10.2.3.3 Configuration
<properties>
The element “properties” can contain the following child elements.

NumberNamespaceDescriptionElement

1..*http://onion.net/modulesystem/widgetcomponentParent element for
defining the
configurations

property

 <property>
The “property” element can contain the following attributes:

OptionalDescriptionAttribute

NoIndicates the name of the
feature.

name

YesIndicates the XMLSchema
data type of the feature.

dataType

NoIndicates whether the feature
is available in the client
component, in the server

mode

component or in both modes.
The following values are
available for this:

Server
Client
ClientServer

53Editors' Manual

YesIndicates whether the feature
is localizable.

localizable

YesIndicates the default value of
the feature.

defaultValue

YesIndicates the type of the
feature. Features can be
u s e r - r e l a t e d o r
system-related. The following
values are for definition:

type

user
system

8.11 Components
Components serve for the user-defined output of information in a form generated from an
XML schema. Examples for components are a calendar which show up when focussing a
date field oder a colorpicker which is displayed when filling in a form field for a color code.
A component can be defined for elements and attributes as well as for simple and complex
types. There is the possibility of executing server-side transformations for this purpose and
of arranging these on the client side with CSS or equipping them with additional functionalities
using Javascript. The server-side transformation is necessary for a component. The CSS
and Javascript are optional however.

The maintenance of the individual components is performed underneath the container
“Components”, which can be seen in the tree view.The binding of a component is performed
in the component binding object of the respective schema.The selectors described here are
available for this.

The maintenance screen of a component is divided up into the following four categories.

General
The definition of a display name and description is possible here. Moreover, the validity of a
component is defined in this configuration section.The component can be valid for the entire
set as well as for elements, attributes or simple or complex types. Using the template aspect
it can be controlled whether a component is to overwrite only the content area or the label
as well. An array and an individual section are differentiated between here. Moreover, a GUID
is automatically defined in this section for identifying the component.

Server component
In this section, the output of the component can be arranged using HTML and XSLT. In
addition, the extensions described here are available.

Client component
This section makes the integration of CSS and Javascript possible. There is the possibility
of binding a Javascript instance to an HTML element. The definition of a prototype and the
binding to the HTML element in the server component is necessary for this. The prototype
string consists of the class name of the Javascript class and the text section “.prototype”

54Editors' Manual

(e.g. dateTimePicker.prototype). The binding in the server component is ensured by the
attribute “data-component”. The GUID of the component must be set as the content of the
attribute.You will find a more detailed description of the Javascript prototype here.

The data binding mode of the component can also be selected in this section. The data
binding mode provides information on the kind of further processing of the form data.
“OuterXml” and “NodeModel” can be chosen between. If “OuterXml” is selected, then possible
child elements will no longer be generated automatically. The component must set the Xml
of the appropriate node. This makes good sense in the case of a WYSIWYG editor for
example. If the data binding mode “NodeModel” is selected however, only the desired content
must be set. Generating the display of child elements or attributes is still possible.

Configuration
This section serves for the definition of user-defined configuration values.These can be used
for example to transfer a localized text value. The definition is performed using XML. You
will find a more detailed description of the XML structure here.

8.11.1 Selectors
In order to bind the component to the XML schema at a certain position, the following selectors
are available.

DescriptionSelector

complexType#complexTypeName or #(anonymous)

simpleType+simpleTypeName or +(anonymous)

element.elementName

attribute@attributeName

any element candidate?.elementName

attribute group~attributeGroupName

group^groupName

element reference<.elementName>

attribute reference<@attributeName>

literalschoice, sequence, any, all, content, attributes

literal for root (!= root element)set

namespace where the selector is declared inselector@namespace

target namespace of the item.{namespace}elementName or
@{namespace}attributeName

specifies an arrayselector[]

selects the n-th iteration of the selectorselector/number

8.11.2 Extensions
http://onion.net/genericforms

http://onion.net/genericforms/common

55Editors' Manual

8.11.2.1 http://onion.net/genericforms
8.11.2.1.1 chooseString
8.11.2.1.2 format
8.11.2.1.3 hasLabel
8.11.2.1.4 id
8.11.2.1.5 label
8.11.2.1.6 serialize
8.11.2.1.7 settings
8.11.2.1.8 split
8.11.2.2 http://onion.net/genericforms/common
8.11.2.2.1 actionUrl
8.11.2.2.2 binaryLength
8.11.2.2.3 binaryMimeType
8.11.2.2.4 binaryUrl
8.11.2.2.5 childrenSchemata
8.11.2.2.6 configuration
8.11.2.2.7 dataObjectIcon
8.11.2.2.8 dataObjectPath
8.11.2.2.9 resourceUrl
8.11.2.2.10 schemaIcon
8.11.2.2.11 schemaLocalization
8.11.2.2.12 schemaLocalizationFromObject
8.11.2.2.13 users

8.11.3 Javascript prototype
Several features and methods are available to the Javascript instance.

DescriptionProperty

Genericform-instance in which the component
is used.

ownerForm

Boolean value which provides information as
to whether the Genericform is editable.

readOnly

Spellchecker-Instance.spellChecker

onion_GenericFormComponent Instance.component

Javascript window in which the component is
used. See also
http://de.selfhtml.org/javascript/objekte/window.htm

sourceWindow

Javascript node on which the component is
bound. See also
http://de.selfhtml.org/javascript/objekte/node.htm

htmlNode

The Genericform data node which is bound
to the component.

dataNode

Value for unique identification in the XML.locator

Object with the transferred properties.settings

56Editors' Manual

http://de.selfhtml.org/javascript/objekte/window.htm
http://de.selfhtml.org/javascript/objekte/node.htm

DescriptionFunction

Enables the calling of status-wide values.data(key)

Enables the setting of status-wide values.data(key, value)

If this function is defined, it is called when
loading and changing the status of the
Genericform.

loadState()

If this function is defined, it is called when
saving the Genericform.

saveState()

If this function is defined, , it is called when
tidying up the Genericform.

destroy()

8.11.4 Configuration

<properties>
The element “properties” can contain the following child elements.

NumberNamespaceDescriptionElement

1..*http://onion.net/genericformsParent element for
defining the
configurations

property

 <property>
The property element can contain the following attributes:

OptionalDescriptionAttribute

NoIndicates the name of the
feature.

name

YesIndicates the XMLSchema
data type of the feature.

dataType

NoIndicates whether the feature
is available in the client
component, server component

mode

or in both modes. The
following values are available
for this:

Server
Client
ClientServer

YesIndicates whether the feature
can be localized.

localizable

YesIndicates the default value of
the feature.

defaultValue

57Editors' Manual

YesIndicates the type of the
feature. Features can be
u s e r - r e l a t e d o r
system-related. The following
values are for definition:

type

user
system

9 Rich text editor
Via the rich text editor, online editors can record contents without any HTML knowledge like
they are used to it in text processing programs such as Microsoft Word.

Figure 53

Rich text editors are also called "WYSIWIG editors". “WYSIWYG” is the acronym of the
principle of “What You See Is What You Get”. With a genuine WYSIWYG, a document is
displayed on the screen during the editing processing in exactly the same way as it looks
following output via another device, for example a printer. In the context of web development,
a WYSIWIG program is a tool depicting an XHTML document during the editing process in
exactly the same way as it will later be displayed in the browser.

Microsoft Word is one the best-known WYSIWYG programs. The user first sees an empty
white page and starts to edit it. He can format texts, insert images and create tables. The
desired contents can be inserted via the relevant menu commands and dialogues.The results
of the user's actions can be directly reviewed on the screen.

The onion.net rich text editor works on the basis of the same principle. Transformations in
the background transfer the actions of the user into source text. If the user does not want it,
he does not have to leave the area of graphic depiction. Optionally, he also has the possibility
to switch between layout and source text views so that the development of the page can also
be followed directly in the source text; corrections and changes can also be made there.

Editing with the rich text editor offers a number of advantages:

Users are rapidly able to enter contents.

The transcription from the abstract source text level to the page depiction in the
browser is not necessary.

The rich text editor can be used without any HTML knowledge.

58Editors' Manual

9.1 Tool bars
The rich text editor has tool bars that can be configured; their buttons make all formatting
options of the editor available. The standard variant of the rich text editor offers the buttons
listed in Table 5. Other buttons can be added.

DescriptionIcon

The formatting of the
highlighted text is deleted.

Delete formatting

The last action is undone.Undo

The last action that has been
undone is redone.

Redo last undo

The highlighted contents is
moved to the clipboard.

Cut

The highlighted contents is
copied to the clipboard.

Copy

Pastes contents from the
clipboard.

Paste

Inserts context as mere text
without formatting.

Insert as text

Inserts contents from Word;
formatting is maintained but
will be adjusted.

Insert from MS Word

Aligns the text paragraph to
the left-hand margin.

Left-aligned

Aligns the text paragraph to
the center.

Centered

Aligns the text paragraph to
the right-hand margin.

Right-aligned

Inserts a sorted list.Numbered list

Inserts an unsorted list.List

Decreases the left-hand side
indent of the highlighted
contents

Decrease indent

59Editors' Manual

Increases the left-hand side
indent of the highlighted
contents

Increase indent

Tags a text paragraph as
quote.

Quotation block

Formats the highlighted text
as hyperlink

Add / edit link

Deletes the highlighted
hyperlink.

Delete link

Inserts an anchor to be able
to directly jump to a specific
location via a link.

Insert / edit anchor

Inserts a local image.New image

Inserts a table.Table

Shows a list of special
characters that can be
inserted in the text.

Insert / edit special characters

Tagging of the language of
the highlighted contents

Tag language

Searches the textSearch

Searches a specific text and
replaces it

Replace

Selects the complete contents
of the text field

Select all

Tags the highlighted text as
bold.

Bold

Tags the highlighted text as
italics.

Italics

Tags the highlighted text as
subscript.

Subscript

Tags the highlighted text as
superscript.

Superscript

Selects a paragraph template
for the current template.

Format

Highlights block elements in
the text with a frame.

Show blocks

60Editors' Manual

Changes to the source text
view of the text.

Source code

Increases the editor's view to
the maximum available
surface.

Maximise

9.2 Properties' dialogues
For some formatting, for example tables or images, properties' dialogues can be called.
Online editors can indicate additional properties and attributes. The offered options are
manifold and range from the definition and formatting of font types and colors, frames, spaces
and positioning. Such optional configurations are generally not supported in the standard
setting of the rich text editor.The reason for this is the separation between visual and semantic
formatting that is explained in the following chapter. In this chapter, we also explain which
properties and attributes are available to which type of formatting.

9.3 Correct use of text tagging
Online editors can make use of numerous formatting options to tag and structure texts in a
reasonable way. In doing so, editors should always stick to the following rule: the rich text
editor does not format contents visually, but semantically.

Semantics are a subdiscipline of linguistics dealing with the analysis and description of the
meaning of language and linguistic expressions. With their formatting, online editors make
a statement on the meaning of contents at this specific location. How the content is optically
presented in the rich text editor plays a minor role. The information content of a text is
separated from its appearance. Highlights make a statement on the type of highlighted
location, for example "this is a heading" or "this is a quotation".

Every online editor should always ask himself the following questions when he wants to
record contents:

What do I want to communicate?

Which type of information do I have here?

How can I structure my information in the easiest and clearest way?

What is the meaning or function of my contents?

What type of tagging is the best way to describe the contents?

The question "What should my contents look like?" should not be posed!

The advantage of this procedure is an improved processing of the recorded contents. These
contents are usually transferred into a target format, for example HTML for the output on a
website or as PDF. This transfer is effected by transformation developers. They are
independent from semantic structures in order to correctly transform the recorded data into
the corresponding output format without any losses. If an editor tags a heading as such, the
transformation developer can see this and also transfer the semantic information into the
target format. A text recorded as heading will then also appear as heading on the website
or in the PDF.

61Editors' Manual

Editors can use the following information to reasonably use the available formatting options.

9.3.1 Headings
A heading provides an introductory description of the topic dealt with in a section. Documents
have one or several main headings (headings of the first order). The headings of the second
order are headings of minor importance for a subsection or several subsections. Headings
of the third order subdivide these subsections. This principle can be hierarchically continued
to the heading of the sixth order.

The rich text editor presents headings in different sizes and formats (bold or italics) depending
on their order. The visible output can, however, be completely different. Whether the online
editor deems individual font sizes as too large, too small or exactly right should not refrain
him from using headings in a logical and correct way related to contents. Headings on websites
are the most important structural elements of a document for users of assisting technologies,
such as Screenreader. It is thus possible to generate a table of contents from the headings
or to jump from heading to heading - these are navigation helps that should not be
underestimated. Headings represent a hierarchy. It is thus considered as bad style to leap
heading levels. A heading of the first order, for example, should never be followed by a
heading of the third order but only by headings of the second order. Disordered heading
hierarchies primarily confuse users of screen readers who follow headings.

9.3.2 Lists
Lists are a type of display format for data in horizontal or (preferably) vertical form. Lists are
used to organise information. The rich text editor offers two types of lists: structured and
unstructured lists.

In a structured list, list items are subject to a specific order. Structured lists usually
have numbered items. A chart list (Top 10, for example) is a typical example of a
structured list.

In an unstructured list, the order of the list items does not play any role. The list
items are usually preceded by a list element marker (bullet). A shopping list is a
typical element of an unstructured list.

Online editors should always use lists if similar contents are to be recorded. It is possible to
cascade lists with the buttons "Decrease indent" and "Increase indent".

9.3.3 Emphasis
Online editors can emphasise text with the buttons "B" (bold) and "I" (italics). These names
are confusing because their focus is on visual properties, i. e. on possible types of emphasis.
The emphasis is, however, semantic and not visual. The button B depicts the highlighted
text with a strong emphasis, the button I with a weak emphasis.The (visual) depiction depends
on the output medium.

9.3.4 Inserting images
Online editors can upload images in the editor via the button "New image". Subsequently,
the image is displayed at the respective location.

A double click on the image opens a properties' dialogue. Table 5 shows the properties and
attributes that can be edited in the standard settings of the editor.

62Editors' Manual

http://jendryschik.de/wsdev/glossar/s/language=de/taps=1222/645/screenreader

Figure 88

Width, height - The width and the height of
the image can be indicated in pixels. This is,
however, not necessary because these values
are automatically available in the system.

Image info

Alignment of the image; only the values "not
Set", "Left" and "Right" are supported.

AlignmentImage info

A link target can be indicated here if the
image is to be linked.

URLLink

The behaviour of the browser when the image
is clicked is described here.

TargetLink

Here you can add an ID to the image.IDExtended

Here you can indicate if an image differs from
the standard system language in these
aspects.

Text direction and
language identifiers

Extended

Indicates the URL of a website where the
graphic is explained in more detail (in the form
of text).

Long URL formExtended

Here you can add a class to the image.Style sheet classExtended

Adds a title to the image.Title descriptionExtended

Here you can indicate CSS styles that are
added inline to an image.

StyleExtended

63Editors' Manual

9.3.5 Links
A link is a reference from a source anchor to a target anchor, in most cases from one
document to another. Distinctions are made between internal and external links of the system.

An internal system link is a link to another object in the onion.net editor. To add such a link,
online editors have to highlight the content that is to serve as source anchor and drag & drop
the object to be linked into the rich text editor.

Figure 89

Online editors add an external link via the button "Add / edit link". The link text needs to be
highlighted first. Following a click on the button, a properties' dialogue opens.The properties
and attributes listed in Table 7 can be edited in the standard configuration.

Figure 90

Indicates the URL schema; depending on the type of
indicated URLs

Link typeLink

64Editors' Manual

Indicates the target anchor of the URL; in case of
internal links, the URL always corresponds to the ID
of the linked object.

UrlLink

Here you can indicate the log of the link.ProtocolLink

Target - The behaviour of the browser when the link is
clicked is described here.

Target page

Indicates an ID or a class of this link.ID, Style sheet
class

Extended

Adds a title to the link describing the link target.Title descriptionExtended

Here you can add a class to the link.Style sheet classExtended

9.3.6 Special characters
It is possible to use Unicode characters with onion.net editor. In 1991, the Unicode Consortium
set the goal to register, index and provide virtually an character used in any language (plus
a large number of additional symbols such as mathematical operators, phonetic symbols,
geometric shapes, arrows and musical notes) in suitable codes that today comprise more
than one million characters. Online editors can only enter a very small part of these characters
directly via the keyboard. Special characters must be entered via specific short cuts or
character tables. The rich text editor provides such a table containing some of the most
frequently used special characters. Table 8 lists these characters and explains when they
are used.

DescriptionCharacterCharacter name

The non-breaking space is
used when no line break is
desired, it is frequently used
between numbers and units
(for example: 20.00 €).

Non-breaking space

According to the Duden, the
short dash is the only dash
permissible in German.There

–Short dash

is a blank on the left and right
of the dash respectively. It is
recommended to enter a
non-breaking space between
the dash and the word
preceding it so that the dash
does not appear at the
beginning of a line. The short
dash is also used to designate

65Editors' Manual

a distance between two
locations (Hamburg – Berlin,
with spaces) or two opponents
(Germany-Hungary 3:2,
without space).

In English texts, the long dash
is used. In German, it is used
to replace "00" of currency
values in tables and price lists
(for example: 20,— EUR).

—Long dash

The sign in the upper
right-hand corner of the
numeric pad (-) is not a minus

− Minus

symbol, but a simple hyphen!
The "genuine" minus symbol
is used as mathematical
operator and as negative sign.

Omissions and continuations
are often depicted by three
subsequent dots. If the

…Omission marks

omission marks appear at the
end of a sentence, no full stop
will follow, however, there
might be other punctuation
marks. Omission marks have
a space on their right and left
side respectively, unless they
replace letters of the
preceding word.

According to the Duden, the
German character set
generally uses two variants of
quotation marks or inverted
commas:

‚Single bottom quotation mark

‘Single left quotation mark

’Single right quotation mark

›Single angle mark pointing to
the right

Double quotation
marks, consisting of
double bottom and
top quotation marks
(„foo“).

‹Single angle mark pointing to
the left

„Double bottom quotation mark
Double angle marks
(a l so ca l l ed
guillemets or French

“Double quotation marked
inclined to the left

quotation marks)
consist of double

66Editors' Manual

”Double quotation marked
inclined to the right

angle marks
pointing to the right
and to the left
(«foo»).Double angle mark pointing to

the right
Additionally, there are so
called single quotation marks
(‚foo‘ and ‹foo›) used for

«Double angle mark pointing to
the left

proper names, definitions of
terms or quotations within a
quotation.

Anglo-Saxon countries follow
different rules. The opening
quotation mark is not typed at
the bottom but at the top, just
like the closing one and
turned towards the word
(“Foo”).

In German, the apostrophe is
used as omission mark for
one or several letters (»Wie

’Apostrophe

geht’s?«) or to mark the
genitive case of names ending
in ss, ß, tz, z or x having no
article (»Das ist Lars’
Aufgabe.«). The correct
character to be used is the
right quotation mark (').

¢Cent

©Copyright

®Registered trademark

™Trademark

½One half

¼One quarter

¾Three quarters

‰Per mill

·Center point

67Editors' Manual

9.3.7 Tables
Tables contain structured data presented in lists of parallel columns or right-angled
arrangements related to each other.Tables can be used to organise information in a (visually)
sensible way.

With a click on the button "Insert table", online editors can create a table. An assistant opens
enabling editors to select up to 4 lines and 6 columns. Following selection of the desired
number of lines and columns, the table is inserted as configured.

The following buttons are self-explanatory and always refer to the cell that is currently
highlighted, i. e. the cell in which the cursor is.

Table cells can contain two types of information: header information or data. This distinction
helps user programs to present header and data cells in different ways: Text in header cells
could be formatted in bold or in a different font. Online editors decide what type of cell they
use via the buttons "header cell" and "data cell".

A properties' dialogue opens with a click of the right mouse button in the table and the following
selection of the menu item "Table properties". Table 10 lists the properties and attributes
available to online editors.

Figure 91

Table 10: important attributes

DescriptionProperties

Indication of the intention and structure of a
table for user programs which output the

Contents

content for non-visual media such as speech
or Braille browsers

68Editors' Manual

Indicates the position of headings in the table
(line, column or none)

Headings

Indication of a table headingHeading

10 Enterprise ChangeSets
What are onion.net Enterprise ChangeSets?
Due to the increasing complexity and relevance of web contents, ever larger groups of editors
are working on various tasks at the same time in content management systems (CMS). The
editors are optimally supported during this parallel working by the onion.net Enterprise
ChangeSets – referred to as “ChangeSets” for short in the following.

Each ChangeSet is presented to the editors as an independent editing environment where
they can carry out any necessary steps that are necessary for the completing the task.

The editors themselves do not have to adapt when working with ChangeSets.The usual way
of working on the onion.net editor does not change. Instead, additional functionalities are
provided as support. In this way conflicts are directly recognized and prevented at the time
of editing. A system message gives detailed information on why an action cannot be
performed.

10.1 Change list
A “ChangeSet” can also be referred to as a “change list”. This means that editors’ work in a
ChangeSet is automatically backed up in a change list. Each ChangeSet works independently
of the other. This means for example that content in documents can be changed in a
ChangeSet, while the same documents are adjusted in structure in another ChangeSet.

If the work in a ChangeSet has been completed to a satisfactory degree, these changes can
be transferred to the productive area. That is to say, all activities in the ChangeSet have not
yet had any effect on the productive area up to this point. These changes are applied to the
productive area through the publication of a ChangeSet. Of course, ChangeSets can also
be rejected. It makes sense to do this in order to safely try out changes on the data stock.
For example, the documents in a ChangeSet can be completely re-sorted in order to test a
new navigation structure.

Previews of the ChangeSets can be seen at any time if you need to check what the changes
to the productive stock would look like. Moreover, previews from several ChangeSets can
also be combined to test the interaction of tasks which have been worked on at the same
time.

It is possible to make changes to the same documents in different ChangeSets as long as
these changes are not conflicting. This would be the case for example if the name of a
document had been changed in ChangeSet A and an editor wished to change the name of
the same document in ChangeSet B. He gets a message stating that this is a conflict. Other
changes to the document can be performed however, such as the re-sorting or changing of
content fields which we have already talked about.

69Editors' Manual

10.1.1 Data view
In a ChangeSet the editor sees the data stock of the productive area with the ChangeSet
changes taken into account.

This becomes especially clear if a change has been made in the productive environment.
This is then visible in all ChangeSets immediately. The change saved in the ChangeSet is
then applied to the document already changed.

Example: a document is renamed in ChangeSet A. In the productive area, the same document
is sorted into another position. After sorting, the document is also in the ChangeSet in its
new position, but has the altered name in addition.

Conflicts are prevented by the fact that no contradictory changes can be made among
ChangeSets and in the productive environment.This means for example that it is not possible
to change the title of a document in ChangeSet B if it has already been changed in ChangeSet
A. This is necessary for example for performing quality assurance over several ChangeSets
simultaneously.

10.1.2 Communication
This case makes it clear that onion.net Enterprise ChangeSets are therefore also a
communication tool which is intended to support the users of the system in their parallel
completion of tasks. A conflict message (e.g. saying that a certain characteristic of a document
has already been changed in another ChangeSet) lets you know that contradictory tasks are
about to be performed in the editorial department. The error message loads for the purpose
of direct communication with colleagues and ensures both a content-related and technical
validity of the documents.

Thus all ChangeSets are consistent at all times and can be transferred to the productive
environment at any time without the manual conflict elimination that would otherwise be
necessary.

10.1.3 Working with ChangeSets
There is no limit as to the number of ChangeSets in a system. Since no copy of the data
stock is created, which would take up time and storage space each time in the case of
extensive websites, it makes sense to create a ChangeSet for many tasks before editing.

10.1.4 An example
The following example ought to give you a better understanding of how to go about using
onion.net Enterprise ChangeSets.

Long-term tasks
Your website often undergoes parallel, longer-term changes in its everyday working life. In
our example these are:

1. “Redesign”: The website is to be modernized to coincide with to the company
anniversary on 01.12. This includes a new layout as well as an altered navigation
structure. Work on this will take several weeks and is accordingly started as early
as in July.

2. “Christmas special”: The Christmas special is to be put online just as redesign is
taking place and still has to be prepared. The peculiarity is that the Christmas
special will be available online in both the old and new layout.

70Editors' Manual

Neither of the tasks can be postponed and have to be worked on in parallel and published
at different times.

10.2 Creating and configuring
Users and rights
One way in which work can be divided up in the editorial department is differentiating between
an editor in charge and a group of editors. Editors are to be able to edit documents but not
to go live with unverified changes.

The editor in charge is to be able to create and edit ChangeSets. Moreover, he is to be able
to perform quality assurance and assign the statuses “accepted” and “rejected” for this
purpose.

The editors only need the rights to work in ChangeSets and to change the status between
“in processing” and “approved”.

You will find a more detailed explanation on the individual statuses in chapter Fehler: Referenz
nicht gefunden Fehler: Referenz nicht gefunden.

An“editors” group should be created if there is not yet one available. In our example it is
sufficient for this group to receive the rights “only in ChangeSets”.

You can also set up separate groups for editors in charge and editors if you would only like
to offer the editor in charge the possibility of deleting documents. Since the ChangeSet (and
thus the deleted documents) can only be published by the editor in charge, doing this is not
absolutely necessary however.

Depending on how your website is structured in the editor, it is sufficient for you to give the
group access to the website folder. The transformations and editor settings do not need to
be able to be changed for our example.

You can also set up different user groups for different work, each of which can only edit a
smaller section of the website. So there can be a group for example which only takes care
of editing news and receives no access to the remaining contents of the website. In the
ChangeSet overview these users can then only see changes to documents to which they
have access.

Figure 92
Configuration button for the group settings

Figure 93
Change of assignment

Apart from the above mentioned settings in the group, the editor in charge also needs the
“Live Editor”role. This is necessary in order to create and configure ChangeSets. Besides,
he could not publish ChangeSets without this role. He does not necessarily need
reading/writing rights on the productive area.

71Editors' Manual

Difference between software releases
Up to release 4.0.6: ChangeSets can be seen and entered by all users with the editor role.
A ChangeSet can be editet published or deleted by the user who created it, or by users with
the admistrator role or the user administrator role.

Since release 4.0.7: ChangeSets can only be seen and entered by the user who created it,
or by users with the admistrator role or the user administrator role.Rights with respect to
ChangeSets have been introduced as a new feature. These rights are associated to groups
and grant all members of the group the right to see and enter, or edit, or publish and delete
the respective ChangeSet.

Compatibility upon upgrading: Upon upgrading to release 4.0.7 (or subsequent) the rights
for all existing ChangeSets are initially set in a way, that the editors can work as they have
been used before. These initial rights can be altered at any time later by the user and group
administration function.

Administrators or user administrators can set the rights to any of the following options while
they create a new ChangeSet:

Full access: creator (default from release 4.0.7)
Full access: creator; read: all users
Full access: creator; read & edit: all users
Full access: all users (default up to realease 4.0.6)

The access for those editors who did not create the ChangeSet, has been restricted to read
& edit up to release 4.0.6. It is now possible, to grant the publishing right for any particular
ChangeSet to these editors.

10.2.1 Table Rights and Roles of a user

Live editorEditorRole / rights

 Create / configure ChangeSet

 Publish/reject ChangeSet

 Set status “in processing”

 Set status “finished”

 Set status "acceptance
issued”

 Set status “rejected”

 Reject individual changes

 Publish individual changes

72Editors' Manual

10.2.2 Creating
To the right-hand side of the last tab there is a tab with a plus symbol. Clicking on this tab
will open a context menu via which you can switch to a ChangeSet that has already been
created or create a new one. Thanks to the coloured highlighting the editor can see at any
time whether he is in a ChangeSet (orange) or in the productive environment (red).

Figure 94

The “plus” sign on the upper tab opens the "Administration selection"

Figure 95

To switch to another ChangeSet or create new sets click on "Editing system".

Figure 96

You designate and describe your new ChangeSet in this dialogue.

73Editors' Manual

10.2.3 Configuring a ChangeSet
The new ChangeSet can now be adapted to requirements by clicking on the button
“Configure”. If you wish to make a change to the configuration while working, you can get to
the right configuration page by clicking once on the ChangeSet name in the structure area.

Figure 97

Button “Configure"

Figure 98

Adapting the ChangeSet

Three different modes can be set per ChangeSet.

Editable
Whoever works in this ChangeSet can edit all documents to which he has access. This is
the default for new ChangeSets.

Accepted documents blocked
Documents which have been given the status “Accepted” can no longer be edited. This
makes sense if workflows are worked with within the ChangeSet and a quality assurance
phase starts. For more on the different statuses within a ChangeSet, see the chapter Working
with “statuses".

Completely blocked
No (more) changes can be made within this ChangeSet. This is particularly wise for quality
assurance phases in which a “frozen zone” has been included. During this time, no more
changes may be made in the contents to be tested, so that no new errors can worm their
way into documents that have already been checked.

74Editors' Manual

10.3 Working in a ChangeSet
As soon as you are in a ChangeSet, all changes made within the ChangeSet to the documents
are shown both in the tree view with colored highlighting and in the ChangeSet overview as
part of a list.

Changes to documents made by you or another editor in a ChangeSet can only be seen in
the respective ChangeSet and can be undone again until the ChangeSet has been published
or document changes have been published via “publish directly”, see also Directly publishing
/ rejecting

10.3.1 Editing documents in a ChangeSet
As soon as you make a change in the ChangeSet, you also produce a new version of the
document just as in the productive environment. However, the version numbering within the
ChangeSet is different.

If for example you change a document which was in Version 2 before being edited, it is now
given the version number 2.1. Further changes within the ChangeSet increase the version
number after the point. If the document or the complete ChangeSet is published, the version
jumps to the next highest version before the point, so Version 3 in this example.

It is important to know that the intermediate versions behind the comma are scrapped at the
time of publishing and cannot be restored.

Figure 99

10.3.1.1 Versioning
Versioning has two peculiarities:

If you are at Version 2.1 in the ChangeSet and the document is checked out before publication
in the productive area, a new Version 3 is created through this. If the ChangeSet version is
then published, a new Version 4 will be produced in the productive area. The Version 3
changes are no longer contained in Version 4, since the Version 2.1 published is based on
Version 2. However, there is still a Version 3 of the document containing the productive area
changes.

The second peculiarity arises if a document has been checked out (and is thus given the
name Version 2), edited and saved in the productive area, but has not yet been returned. If
the document is checked out in a ChangeSet in this moment, a new Version 2.1 will be
produced. The document that is still checked out is then reset to Version 1 in the productive
area by pressing “reject version”. The changes from the productive area now continue to be
contained in the ChangeSet in Version 2.1 and also enter the productive area at the time of
publishing. In this way contents can be published which should not really be published.

75Editors' Manual

In order to prevent this problem, a notice is shown when the document is checked out in the
ChangeSet, indicating that the document in the productive area is also being edited at present
and that a temporary data stock is being transferred to the ChangeSet.

Figure 100

10.3.2 Editor tree view
The colors in the tree view reflect the status of a document. Documents that have not been
changed in relation to the productive environment are shown in dark grey as usual. If
documents have been changed within this ChangeSet, they are shown in blue italics.

As well as the status “in processing”, there is a further status which a document in the
ChangeSet can take. These become important when workflows are worked with. These
statuses are “finished” in orange and italics, “acceptance issued” in green and italics and
“acceptance refused” in red and italics.

Figure 101

The work with the statuses is explained in more detail in Working with “statuses”

10.3.3 The ChangeSet overview
You can switch to the ChangeSet overview at any time by clicking once on the name of the
ChangeSet. This contains lists of the changed documents with their statuses as well as
possibilities of set configuration.

76Editors' Manual

Tip: Click on the field with the name of the ChangeSet while holding down the Shift key. The
ChangeSet will now open in a new window. This is particularly practical, since the “list of the
last 25 changes in the ChangeSet” is updated as soon as you make changes in the main
window.

This view is divided into three tabs.

Figure 102

Overview
This view gives you both an overview of the changes in the ChangeSet and the possibility
of navigating between the documents last edited.

In the area at the top you can see the meta data of the document. This includes the name
of the ChangeSet, the total number of changes as well as the list of the editors involved.

Underneath you will find a list of the last 25 changes made by you.You can expand the view
to include the changes by all editors involved, by putting a checkmark next to “show changes
by all users”. Due to the fact that individual changes are given in this list, documents are
shown several times if they contain several changes.

By right-clicking once on a line in the list, you can open a context menu where you can jump
directly to the document within the ChangeSet or open the change list of this document.

Tip: If you hold down Shift when clicking on the context menu entry “open”, you can open
the target in a new window here too.

If you click on “change list”, the dialog of the same name will open where you can execute
further actions on this document. This is explained in chapter Dialog change list.

Changed documents are shown on the list in grey, whilst the name of deleted documents is
indicated in dark red. A symbol in the last column shows which change is concerned:

Producing of a document

Renaming

Content-related editing

Sorting changed (order in a structural level)

Moving (into another structural level)

Deleting

77Editors' Manual

Meta data
Here you will find further meta information on the ChangeSets, which display both information
about the originator of the ChangeSet and the configuration of the latter. This tab is purely
for the purpose of information.

Changes
The list displayed here contains a detailed overview of the changed documents and also
indicates which changes have been made to the respective document.

Just as with the overview list, you have the possibility here of opening the document indicated
or of accessing the change list with a right-click.

Moreover, columns for the different statuses of a document “in processing”, “finished”,
“accepted” and “rejected” are shown in the right-hand area.These statuses do not only serve
for the overview, but can - dependant on the rights of the user - also be changed directly in
this list by clicking once on the appropriate field. See the example workflow in this chapter.

10.3.3.1 Filtering options
As time goes on, a great many changes to documents can accumulate in a ChangeSet.
Using the filtering options in this list you can determine which changes you would like to be
shown.

All documents are shown as standard which have a checkmark in at least one of the columns
under “changes” and “status”.

By clicking on one or several of the symbols in the column heading, you can now deactivate
(filter) these for displaying. Documents which only have a checkmark in these deactivated
columns would now no longer be shown.

Figure 103

Figure 104

Alternatively, you can also select all columns in the respective area at once by clicking on
the heading “changes” or “status”.

If you have deactivated a column and a document is still shown in the list because of another
checkmark, the checkmark of the deactivated column is shown in grey.

The list is “OR”-linked. This means that all documents are shown which have a checkmark
in at least one of the active columns.

Workflows can be easily displayed using these filter functions.

78Editors' Manual

10.3.3.2 Example workflow
The editor in charge would like to examine all documents for approval which have been set
to the “finished” status by the editors.

To do this, he first opens the ChangeSet in a new window and positions it in such a way that
he can see both Editor windows at the same time. He goes to the change view in the
ChangeSet window and hides all documents first by clicking on the headings “changes” and
“status”. He then activates the column “finished” under “status” only. Now only those
documents with this status are shown in the list.

The editor in charge now goes through the list and examines the document changes. It is
shown which these are by the grey ticks in the columns under “changes”. Depending on the
change, previewing the document or opening it in the editor may become necessary.

Figure 105

The document is opened by left-clicking on the name or path. By holding down the CTRL
key and left-clicking once you will open the document in a new tab. Right-clicking in the same
place will open the context menu. The changes list can now be called here.
For the examined document, the tick can now be directly changed from “Approved” to
“Accepted” or “Rejected” in the changes list by clicking in the free field within the respective
column.

Figure 106

The edited element will now disappear automatically from the list of changes.

10.3.4 Automatic display optimization
The way the changes are displayed is optimized both in the tree view and in the tables of
the ChangeSet. This means that only actual changes in relation to the productive area are
shown.

If for example you sort an element in the navigation in a ChangeSet, it is marked as a change.
If the same document is now moved in the productive environment to the same place in the
navigation, it is recognized by the ChangeSet. Since the new positioning in the ChangeSet
is now no longer a change, it is also no longer shown as such.

10.3.5 Preview of changes
If you access a preview in the ChangeSet from the changes lists or by right-clicking in the
tree view, you will see exactly the status that corresponds to the current productive status
with the changes of the current ChangeSet.You will not get to see changes which are made
simultaneously in another ChangeSet.

However, you also have the possibility of including changes from other ChangeSets in the
preview. Using checkboxes you can select the ChangeSets to be included in this preview.
These settings will now also be used for future previews accessed in the normal way.

79Editors' Manual

Figure 107

This setting will be applied until the session in the preview browser expires due to user
inactivity. This value is set to a default of 15 minutes.

Figure 108

In this way you can look at different work statuses separately as well as a combination of
several of them.

Example
Your enterprise is working on the website relaunch mentioned above. The new layout is to
go online at a particular time. There is ChangeSet for this relaunch.

At the same time, a Christmas Special is being worked on which is to be put online for a
certain period. The peculiarity here is that the Special is to go online before the relaunch,
and is also to stay there for some time after the relaunch. This Special also has its own
ChangeSet.

A preview can be created within each one of the ChangeSets during the QA phase, meaning
you can see the Special with the old layout or the new layout without Special.

If you now access the preview from the productive area, you can activate the two ChangeSets
for this preview in the assistant and thus check what the Special looks like together with the
new layout.

80Editors' Manual

10.3.6 Dialog change list
The dialog change list offers you possibilities in a ChangeSet of administering the changes
to a document.

You can open the dialog in the tree view or from the two list views in the ChangeSet overview.
In order to do this you need to right-click a changed document and select the context menu
entry “change list”.

Figure 109

The change list offers two basic functionalities. A status can be given to the document in the
area at the top. Underneath there is a list showing all changes which have been made to this
document in the current ChangeSet.

10.3.6.1 Working with “statuses”
It is possible to display workflows using the status field. These statuses do not necessarily
have to be used in the ChangeSet, although they do aid clarity.

Figure 110

 A document can take the following statuses:

“In processing”
“Finished”
“Acceptance issued”
“Rejected”

A document automatically switches to the status “in processing” as soon as a document has
been changed.This concerns both content-related changes and re-sorting in the navigation.
All further status changes must be explicitly set via the change list.

81Editors' Manual

If an editor is happy with the state of a document, he sets the status to “finished”. The editor
in charge can now have all finished documents listed in the ChangeSet overview and check
them. Then the document can either be set to the status “accepted” or “rejected”.

In combination with the optional ChangeSet configuration to not allow accepted documents
to be edited again, an efficient QA phase can be implemented.

10.3.6.2 Directly publishing / rejecting
Apart from status changing, this dialog also offers the possibility of viewing the changes to
a document. Each change is represented by its own line in the list. In addition, it is shown
who made the change and when.

As well as offering pure information, this list also gives you the possibility of directly publishing
or rejecting all changes or just individual ones.

“Publishing” means that the selected changes pass directly into the productive area without
the complete ChangeSet having to be published.

In order to do this, either press the button “publish directly” or “reject” in the area “direct
actions”.

A check box will appear beside each of the changes. You can use the check box to define
whether the respective change is to be published or rejected.

Figure 111

Thanks to this mechanism, changes from the ChangeSet can go directly online without the
complete document having to be published. Other changes which are intended for a later
time stay in the ChangeSet as a change after publication. The exact same thing goes for the
rejecting of changes. All other changes stay but the selected changes are deleted from the
ChangeSet.

With this kind of publishing or rejecting it is possible for conflicts to arise however. The
ChangeSets are always valid as a whole, but older changes in documents may contradict
changes in other elements.

Example: In a navigation path there is a document with the name A and a document with
the name B. Document A is renamed to “D” and then to “C”. Document B is now renamed
to “D”. Following all editing steps, there is now a Document C and a Document D in the
ChangeSet.

Using the “publish directly”function of Document D, an editor would now like to publish the
change of name “from A to C”.This will cause a conflict however, since there is (now) another
document with this name.

82Editors' Manual

10.4 Publishing / rejecting ChangeSets
After all work in a ChangeSet has been completed, the latter can be published.The peculiarity
of the onion.net Enterprise ChangeSet is that each ChangeSet can be published without
problems since no conflicts can arise at the time of the publication process.

Figure 112

Following a confirmation prompt, the changes of the ChangeSet will be applied to the
productive area and the empty ChangeSet is deleted.

The status the individual documents are in is not important for a publication. So even
documents with the status “rejected” are published. If documents that are still checked out
are in the ChangeSet at the time of publication, these are transferred to the productive
environment with the changes currently checked out and are no longer checked out there.

The intermediate versions of the documents produced in the ChangeSet are scrapped when
publishing.

Of course, it is also possible to reject all changes in one go. If this is done, all changes are
lost and the ChangeSet is deleted.

83Editors' Manual

Figures
Abbildung 1, Seite 1

Abbildung 2, Seite 2

Abbildung 3, Seite 3

Abbildung 4, Seite 3

Abbildung 5, Seite 7

Abbildung 6, Seite 7

Abbildung 7, Seite 9

Abbildung 8, Seite 9

Abbildung 9, Seite 10

Abbildung 10, Seite 10

Abbildung 11, Seite 11

Abbildung 12, Seite 13

Abbildung 13, Seite 17

Abbildung 14, Seite 17

Abbildung 15, Seite 22

Abbildung 16, Seite 23

Abbildung 17, Seite 24

Abbildung 18, Seite 24

Abbildung 19, Seite 24

Abbildung 20, Seite 25

Abbildung 21, Seite 25

Abbildung 22, Seite 25

Abbildung 23, Seite 26

Abbildung 24, Seite 28

Abbildung 25, Seite 28

Abbildung 26, Seite 29

Abbildung 27, Seite 29

Abbildung 28, Seite 30

Abbildung 29, Seite 30

Abbildung 30, Seite 31

Abbildung 31, Seite 31

Abbildung 32, Seite 58

Abbildung 33, Seite 64

Abbildung 34, Seite 71

Abbildung 35, Seite 74

Abbildung 36, Seite 75

Abbildung 37, Seite 77

Abbildung 38, Seite 78

Abbildung 39, Seite 78

Abbildung 40, Seite 79

Abbildung 41, Seite 79

